a.
Với \(m=-2\Rightarrow\left\{{}\begin{matrix}x+y=2\\-2x+y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\3x=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=2-\dfrac{4}{3}=\dfrac{2}{3}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}x+y=2\\mx+y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\\left(m-1\right)x=m-2\end{matrix}\right.\)
Phương trình có nghiệm khi \(m\ne1\)
Khi đó: \(x=\dfrac{m-2}{m-1}=1-\dfrac{1}{m-1}\)
\(x\in Z\Rightarrow\dfrac{1}{m-1}\in Z\Rightarrow m-1=Ư\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow m=\left\{0;2\right\}\)