ĐKXĐ: \(xy\ne0;x\ne\pm y\)
\(\left\{{}\begin{matrix}\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{\dfrac{1}{y}+\dfrac{1}{x}}=\dfrac{5}{2}\\\dfrac{1}{y}-\dfrac{1}{x}+\dfrac{1}{\dfrac{1}{y}-\dfrac{1}{x}}=\dfrac{10}{3}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b+\dfrac{1}{a+b}=\dfrac{5}{2}\\b-a+\dfrac{1}{b-a}=\dfrac{10}{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2-\dfrac{5}{2}\left(a+b\right)+1=0\\\left(b-a\right)^2-\dfrac{10}{3}\left(b-a\right)+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a+b=2\\a+b=\dfrac{1}{2}\end{matrix}\right.\\\left[{}\begin{matrix}b-a=3\\b-a=\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}a+b=2\\b-a=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=\dfrac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=\dfrac{5}{2}\end{matrix}\right.\)
3 TH còn lại xét tương tự