\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{\left(2x-2\right)^2}+5\sqrt{\left(y+2\right)^2}=13\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2.2\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\\ \left|x-1\right|=a;\left|y+2\right|=b\\ \Rightarrow\left\{{}\begin{matrix}5a-3b=7\\4a+5b=13\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}25a-15b=35\\12a+15b=39\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}37a=74\\5a-3b=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=2\\5.2-3b=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\\\left[{}\begin{matrix}y+2=1\\y+2=-1\end{matrix}\right.\end{matrix}\right.\\ \left\{{}\begin{matrix}\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\\\left[{}\begin{matrix}y=-1\\y=-3\end{matrix}\right.\end{matrix}\right.\)