\(\left(3^x-27\right)\left(2\sqrt{x}-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3^x-27=0\\2\sqrt{x}-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=27\\2\sqrt{x}=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=3^3\\\sqrt{x}=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\\left(\sqrt{x}\right)^2=2^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy \(x=3;x=4\)
\(=>\left[{}\begin{matrix}3^x-27=0\\2.\sqrt{x}-4=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}3^x=0+27\\2.\sqrt{x}=0+4\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}3^x=27\\2.\sqrt{x}=4\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}3^x=3^3\\\sqrt{x}=4:2\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=3\\\sqrt{x}=2\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy .....
3^x — 27 = 0 và 2√x - 4 = 0
<=> 3^x = 27 và 2√x = 4
<=> x = 3 và x = 4