( 1 + 9 ) - ( 1 + 9) = 10 - 10 = 0
k mình đi mình k lại
\(\left(1+9\right)-\left(1+9\right)=10+10=20\)
\(\left(1+9\right)-\left(1+9\right)=0\)
ai k mk mk k lại !
( 1 + 9 ) - ( 1 + 9) = 10 - 10 = 0
k mình đi mình k lại
\(\left(1+9\right)-\left(1+9\right)=10+10=20\)
\(\left(1+9\right)-\left(1+9\right)=0\)
ai k mk mk k lại !
ĐKXD: tự làm nhé =='
từ đề
\(\Rightarrow A=\frac{2\sqrt{y}-9}{\left(\sqrt{y}-2\right)\left(\sqrt{y}-3\right)}-\frac{\left(\sqrt{y}+3\right)\left(\sqrt{y}-3\right)}{\left(\sqrt{y}-2\right)\left(\sqrt{y}-3\right)}+\frac{\left(2\sqrt{y}+1\right)\left(\sqrt{y}-2\right)}{\left(\sqrt{y}-2\right)\left(\sqrt{y}-3\right)}\)
\(\Rightarrow A=\frac{2\sqrt{y}-9-y+9+2y-3\sqrt{y}-2}{MC}\)
\(\Rightarrow A=\frac{y-\sqrt{y}-2}{MC}=\frac{\left(\sqrt{y}-2\right)\left(\sqrt{y}+1\right)}{\left(\sqrt{y}-2\right)\left(\sqrt{y}-3\right)}=\frac{\sqrt{y}+1}{\sqrt{y}-3}\)
Đc nhé bác :D
Sensodai: ĐỀ NGHỊ CÁC THÀNH PHẦN TAY NHANH HƠN NÃO K CMT NHÉ =='
Đã bảo là liên hợp là ra mà đ tin hả Zũ ? -_-
\(x^3+\sqrt{\left(x+1\right)^3}=9x+8\left(x\ge-1\right)\)
\(\Leftrightarrow\left(x^3+1\right)+\left(x+1\right)\sqrt{x+1}-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1+\sqrt{x+1}-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(Tm\right)\\x^2-x+\sqrt{x+1}-8=0\left(1\right)\end{cases}}\)
Giải \(\left(1\right)\Leftrightarrow\left(x^2-3x\right)+\left(2x-6\right)+\left(\sqrt{x+1}-2\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2+\frac{1}{\sqrt{x+1}+2}\right)=0\)
Vì x > -1 nên dễ thấy cái ngoặc to > 0
Do đó x = 3
Vậy có 2 nghiệm -1 và 3 (nghiệm thứ 3 nào nữa nhỉ ? -,-'' )
tìm x biết
a)\(x+2x+3x+4x+...+2015x=2016\times2017\)
b)\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1008}-1}{4}\)
c)\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)
d)tìm x nguyên biết \(\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|=2500\)
e) tìm x nguyên biết \(2004=\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+99x\right|+\left|x+1000\right|\)
Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(
Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:
\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)
Cần chứng minh
\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow v^2\left(\left(3v^2+a^2\right)^2+\left(3v^2+b^2\right)^2+\left(3v^2+c^2\right)^2\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+81u^4-108u^2v^2+18v^4+12uw^3\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow135u^4v^2-144u^2v^4+12uv^2w^3-27uv^2+45v^6+3w^3\ge0\)
@ Mình thử thôi nha, ko chắc đâu!
\(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Đặt \(\sqrt[3]{3x+1}=a;\sqrt[3]{5-x}=b;\sqrt[3]{2x-9}=c;\sqrt[3]{4x-3}=d\)
\(\Rightarrow a^3+b^3+c^3=4x-3=d^3\)
Kết hợp đề bài ta có hệ:\(\hept{\begin{cases}a+b+c=d\left(1\right)\\a^3+b^3+c^3=d^3\left(2\right)\end{cases}}\)
Thay (1) vô (2) có ngay: \(\left(a+b+c\right)^3=a^3+b^3+c^3\)
Hay \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Auto làm nốt:D
ta có P=\(\frac{x^2}{x\sqrt{y+3}}+\frac{y^2}{y\sqrt{z+3}}+\frac{z^2}{z\sqrt{x+3}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y+3}+y\sqrt{z+3}+z\sqrt{x+3}}\)
mà \(\left(x\sqrt{y+3}+...\right)^2\le\left(x+y+z\right)\left(xy+yz+zx+3x+3y+3z\right)\le3\left(9+3\right)=36\) ( vì xy+yz+zx<=3)
=>\(x\sqrt{y+3}+...\le6\Rightarrow P\ge\frac{9}{6}=\frac{3}{2}\)
dấu = xảy ra <=> x=y=z=1
\(Q=\left(\frac{2}{2+2\sqrt{a}}+\frac{1}{2-2\sqrt{a}}-\frac{a^2+1}{1-a^2}\right)\left(1+\frac{1}{a}\right)\)
\(=\left(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+a\right)+\left(1+\sqrt{a}\right)\left(1+a\right)-2\left(a^2+1\right)}{2\left(1-a\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{1+a-\sqrt{a}-a\sqrt{a}+1+a+\sqrt{a}+a\sqrt{a}-2a^2-2}{2\left(1-a\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{2a-2a^2}{2\left(1-a\right)\left(1+a\right)}\right)\)
\(=\frac{a}{a}\)= 1
\(\left(x^2-4x\right)^2-\left(x-2\right)^2+10=0.\)
\(\left(x-2\right)=t\Leftrightarrow x=t+2\)
thay x=t+2 ta được
\(\left\{\left(t+2\right)^2-4\left(t+2\right)\right\}^2-t^2+10=0\)
\(\left(t^2-4\right)^2-t^2+10=0\)
\(t^4-8t^2+16-t^2+10=0\)
\(t^4-9t^2+26=0\)
\(t^2=m\)
\(m^2-9m+26=0\)
\(\left(m^2-9m+\frac{81}{4}\right)-\left(\frac{81}{4}+26\right)=0\)
\(\left(m-\frac{9}{2}\right)^2-\left(\frac{81}{4}+26\right)=0\)
\(\left(m-\frac{9}{2}+\sqrt{\frac{81}{4}+26}\right)\left(m-\frac{9}{2}-\sqrt{\frac{81}{4}+26}\right)=0\)
ta có P=\(\frac{x^2}{\sqrt{xy+3x}}+...\ge\frac{\left(x+y+z\right)^2}{\sqrt{xy+3x}+...}=\frac{9}{\sqrt{xy+3x}+...}\)
mà \(\left(\sqrt{xy+3x}+...\right)^2\le3\left(xy+...+3x+...\right)\le3\left(3+9\right)=36\Rightarrow\sqrt{xy+3x}+...\le6\)
=>\(P\ge\frac{3}{2}\)