Lập mệnh đề P ⇒ Q và xét tính đúng sai của nó, với P: “2 < 3”, Q: “-4 < -6”
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ Q : x2 = 2
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
Phát biểu mệnh đề P => Q và phát biểu mệnh đề đảo, xét tính đúng sai của các mệnh đề đó với: P: ″2 > 9″ và Q: ″4 < 3″. Chọn đáp án đúng:
A. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này đúng vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q đúng.
B. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này sai vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q sai.
C. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này sai vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này sai vì mệnh đề Q sai.
D. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này đúng vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q sai.
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực cộng với số đối của nó đều bằng 0.
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó. ∀ x ∈ R: x.x = 1
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∀ x ∈ R : x < x + 1
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ R: 3x = x2 + 1
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó ∀ x ∈ R: x.1 = x;