Gọi thời gian để vòi 1 chảy một mình đầy bể là x(giờ), thời gian để vòi 2 chảy một mình đầy bể là y(giờ)
(Điều kiện: x>0 và y>0)
Nếu để chảy một mình thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 2 giờ nên ta có: b-a=2
=>b=a+2(1)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{a}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{b}\left(bể\right)\)
Trong 1 giờ, hai vòi chảy được:
\(1:\dfrac{4}{3}=\dfrac{3}{4}\left(bể\right)\)
Do đó, ta có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}b=a+2\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+2\\\dfrac{1}{a}+\dfrac{1}{a+2}=\dfrac{3}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=a+2\\\dfrac{a+2+a}{a\left(a+2\right)}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+2\\\dfrac{2a+2}{a^2+2a}=\dfrac{3}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\left(a^2+2a\right)=4\left(2a+2\right)\\b=a+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a^2+6a-8a-8=0\\b=a+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a^2-2a-8=0\\b=a+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a^2-6a+4a-8=0\\b=a+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)\left(3a+4\right)=0\\b=a+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}a-2=0\\3a+4=0\end{matrix}\right.\\b=a+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=2\left(nhận\right)\\a=-\dfrac{4}{3}\left(loại\right)\end{matrix}\right.\\b=a+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=2\\b=2+2=4\end{matrix}\right.\left(nhận\right)\)
Vậy: Thời gian để vòi 1 chảy một mình đầy bể là 2 giờ
Thời gian để vòi 2 chảy một mình đầy bể là 4 giờ