Bài 2:
Gọi độ dài quãng đường AB là x(km)
(Điều kiện: x>0)
Thời gian đi từ A đến B là \(\dfrac{x}{25}\left(giờ\right)\)
Thời gian đi từ B về A là \(\dfrac{x}{30}\left(giờ\right)\)
Tổng thời gian cả đi lẫn về là \(3h40p=\dfrac{11}{3}\left(giờ\right)\) nên ta có phương trình:
\(\dfrac{x}{25}+\dfrac{x}{30}=\dfrac{11}{3}\)
=>\(\dfrac{6x+5x}{150}=\dfrac{11}{3}\)
=>\(\dfrac{11x}{150}=\dfrac{11}{3}\)
=>\(x=\dfrac{11}{3}:\dfrac{11}{150}=50\left(nhận\right)\)
Vậy: ĐỘ dài quãng đường AB là 50km
Bài 3:
1:
a: Sửa đề: ΔABC vuông tại A
Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{ACB}\) chung
Do đó: ΔCHA~ΔCAB
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
Xét ΔCAB có CD là phân giác
nên \(\dfrac{AD}{AC}=\dfrac{DB}{BC}\)
=>\(\dfrac{AD}{4}=\dfrac{DB}{5}\)
mà AD+DB=AB=3cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{4}=\dfrac{DB}{5}=\dfrac{AD+DB}{4+5}=\dfrac{3}{9}=\dfrac{1}{3}\)
=>\(AD=4\cdot\dfrac{1}{3}=\dfrac{4}{3}\left(cm\right);DB=5\cdot\dfrac{1}{3}=\dfrac{5}{3}\left(cm\right)\)
c: Xét ΔCAH có CI là phân giác
nên \(\dfrac{IH}{AI}=\dfrac{CH}{CA}\left(1\right)\)
Xét ΔCAB có CD là phân giác
nên \(\dfrac{AC}{BC}=\dfrac{AD}{DB}\left(2\right)\)
Ta có: ΔCHA~ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CA}{CB}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{CA}{CB}=\dfrac{IH}{IA}\)