Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đen đủi mất cái nik

làm bài bất trước khi nghỉ tết chứ mấy god nhề( bài e chế) bài này để giải trí thôi nên dễ, ai sol đầu thì e tick. còn ko thì chắc vài ngày nữa e sẽ đăng lời giải hoặc ko đăng vì việc khác...

Cho a,b,c>0 thỏa mãn:

\(\frac{ab+bc+ca+6\left(a+b+c\right)+27}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

Tìm Min P biết 

\(P=\frac{1}{a^2-9}+\frac{1}{b^2-9}+\frac{1}{c^2-9}\)

Comebacktome
30 tháng 1 2019 lúc 12:58

Sửa lại đề là tìm Max nhé m.n

Ta có:

\(\frac{ab+bc+ca+6\left(a+b+c\right)+27}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{\left(b+3\right)\left(c+3\right)+\left(c+3\right)\left(a+3\right)+\left(a+3\right)\left(b+3\right)}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{5}{a+3}+\frac{5}{b+3}+\frac{5}{c+3}=3\Leftrightarrow\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

Xét biểu thức:

\(\frac{a^2-4}{a^2-9}=\frac{\left(a-2\right)\left(a+2\right)}{\left(a-3\right)\left(a+3\right)}=\frac{a-2}{a+3}.\frac{a+2}{a-3}\)

tưởng tự:

\(\frac{b^2-4}{b^2-9}=\frac{b-2}{b+3}.\frac{b+2}{b-3},\frac{c^2-4}{c^2-9}=\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}=\frac{a-2}{a+3}.\frac{a+2}{a-3}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

Do vai trò của a và b và c như nhau nên ta giả sử

\(a\ge b\ge c\)

Khi đó ta có:

\(\frac{a-2}{a+3}\ge\frac{b-2}{b+3}\ge\frac{c-2}{c+3},\frac{a+2}{a-3}\le\frac{b+2}{b-3}\le\frac{c+2}{c-3}\)

Áp dụng bất đẳng thức chebyshev cho 2 bộ ngược chiều trên ta có
\(\frac{a-2}{a+3}.\frac{a+3}{a-2}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\le\left(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}\right).\left(\frac{a+2}{a-3}+\frac{b+2}{b-3}+\frac{c+2}{c-3}\right)\)

Mà \(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}\le0\)

\(\Rightarrow\frac{5}{a^2-9}+\frac{5}{b^2-9}+\frac{5}{c^2-9}\le-3\Rightarrow\frac{1}{a^2-9}+\frac{1}{b^2-9}+\frac{1}{c^2-9}\le\frac{-3}{5}\)

Dấu bằng xảy ra khi a=b=c=2

Đen đủi mất cái nik
30 tháng 1 2019 lúc 13:03

Tìm max nha mấy god, e bị nhầm sory

Đen đủi mất cái nik
10 tháng 2 2019 lúc 16:35

 e sửa lại hahaha, bất đẳng thức chebyshev áp dụng v là ko đúng, phải lớn hơn hoặc bằng ạ, e cứ bị nhầm dấu, lần đầu đã ok r sau lại còn sửa hjhj


Các câu hỏi tương tự
zZz Cool Kid_new zZz
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết
Le Trang Nhung
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết
Thiên An
Xem chi tiết
tth_new
Xem chi tiết
Lê Trường Lân
Xem chi tiết