\(\frac{2000}{2001}=1-\frac{1}{2001}\)
\(\frac{2001}{2002}=1-\frac{1}{2002}\)
\(2001< 2002\Rightarrow\frac{1}{2001}>\frac{1}{2001}\)
\(\Rightarrow1-\frac{1}{2001}< 1-\frac{1}{2002}\)
\(\Rightarrow\frac{2000}{2001}< \frac{2001}{2002}\)
ta có:2000/2001=1-1/2001
2001/2002=1-1/2002
mà 2001<2002
suy ra 1/2001>1/2002
suy ra 1-1/2001<1-1/2002
vậy 2000/2001<2001/2002
Trả lời:
Ta có: \(\frac{2000}{2001}=\frac{2001-1}{2001}=\frac{2001}{2001}-\frac{1}{2001}=1-\frac{1}{2001}\)
\(\frac{2001}{2002}=\frac{2002-1}{2002}=\frac{2002}{2001}-\frac{1}{2002}=1-\frac{1}{2002}\)
Ta thấy: \(2001< 2002\)
\(\Leftrightarrow\frac{1}{2001}>\frac{1}{2002}\)
\(\Leftrightarrow-\frac{1}{2001}< -\frac{1}{2002}\)
\(\Leftrightarrow1-\frac{1}{2001}< 1-\frac{1}{2002}\)
\(\Leftrightarrow\frac{2000}{2001}< \frac{2001}{2002}\)
Vậy ....