Cho khối lập phương ABCD. A’B’C’D’ có cạnh là a. Tính thể tích khối chóp tứ giác D.ABC’D’.
A. a 3 3
B. a 3 2 6
C. a 3 2 3
D. a 3 4
Một khối lập phương có độ dài đường chéo bằng a 6 Tính thể tích của khối lập phương đó.
Cho hình lập phương ABCD. A’B’C’D’có cạnh bằng a. Gọi S là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hình vuông ABCD và A’B’C’D’ . Tính S.
A. π a 2
B. π a 2 2 2
C. π a 2 2
D. π a 2 3
Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng 2a. Một hình trụ có hai đáy là hai hình tròn nội tiếp trong hai hình vuông ABCD và A’B’C’D’. Tính thể tích của khối lăng trụ tạo nên từ hình trụ trên.
A . 2 πa 3
B . πa 3
C . 2 2 πa 3
D . 4 πa 3
Thể tích của khối hộp lập phương có đường chéo bằng 3a là
Cho hình hộp ABCD. A’B’C’D’ gọi O là giao điểm của AC và BD. Tính tỉ số thể tích của khối chóp O. ABC và khối hộp ABCD. A’B’C’D’ điểm của AC và BD. Tính tỉ số thể tích của khối chóp O. ABC và khối hộp ABCD. A’B’C’D’
A. 1 4
B. 1 3
C. 1 6
D. 1 12
Cho hình hộp chữ nhật ABCD.A' B' C' D' có tổng diện tích của tất cả các mặt là 36, độ dài đường chéo AC' bằng 6. Hỏi thể tích của khối hộp lớn nhất là bao nhiêu?
A. 8
B. 8 2
C. 16 2
D. 24 3
Cho hình lập phương ABCD. A’B’C’D’ (hình vẽ bên dưới). Góc giữa hai đường thẳng AC và A’D bằng
A. 45⁰.
B. 30⁰.
C. 60⁰.
D. 90⁰.
Cho hình lập phương ABCD. Gọi M là điểm trên đường chéo CA' sao cho Tính tỉ số giữa thể tích V 1 của khối chóp M.ABCD và thể tích V 2 của khối lập phương.