Chọn C.
Phương pháp:
Sử dụng lí thuyết các khối đa diện đều.
Cách giải:
Khối mười hai mặt đều có mặt là ngũ giác đều, không phải tam giác đều.
Chọn C.
Phương pháp:
Sử dụng lí thuyết các khối đa diện đều.
Cách giải:
Khối mười hai mặt đều có mặt là ngũ giác đều, không phải tam giác đều.
Hình mười hai mặt đều thuộc loại khối đa diện đều nào sau đây?
A. {3;5}
B. {3;3}
C. {5;3}
D. {4;3}
Cho khối đa diện như hình vẽ bên. Trong đó ABC.A' B' C' là khối lăng trụ tam giác đều có tất cả các cạnh đều bằng 1, S.ABC khối chóp tam giác đều có cạnh bên SA=2/3. Mặt phẳng (SA' B' ) chia khối đa diện đã cho thành hai phần. Gọi V 1 là thể tích phần khối đa diện chứa đỉnh A, V 2 là thể tích phần khối đa diện không chứa đỉnh A. Mệnh đề nào sau đây đúng
A. 72 V 1 = 5 V 2
B. 3 V 1 = V 2
C. 24 V 1 = 5 V 2
D. 4 V 1 = 5 V 2
Cho khối lập phương ABCD.A’B’C’D’. Cắt khối lập phương bởi các mặt phẳng (AB’D’) và (C’BD) ta được ba khối đa diện. Xét các mệnh đề sau:
(I): Ba khối đa diện thu được gồm hai khối chóp tam giác đều và một khối lăng trụ tam giác.
(II): Ba khối đa diện thu được gồm hai khối tứ diện và một khối bát diện đều.
(III): Trong ba khối đa diện thu được có hai khối đa diện bằng nhau.
Số mệnh đề đúng là
A. 3
B. 2
C. 0
D. 1
Cho khối lập phương ABCD.A’B’C’D’. Cắt khối lập phương trên bởi các mặt phẳng (AB’D’) và (C’BD) ta được ba khối đa diện. Xét các mệnh đề sau:
(I): Ba khối đa diện thu được gồm hai khối chóp tam giác đều và một khối lăng trụ tam giác.
(II): Ba khối đa diện thu được gồm hai khối tứ diện và một khối bát diện đều
(III): Trong ba khối đa diện thu được có hai khối đa diện bằng nhau
Số mệnh đề đúng là:
A. 2
B. 1
C. 3
D. 0
Khối đa diện nào sau đây có các mặt không phải là tam giác đều?
A. Bát diện đều
B. Nhị thập diện đều
C. Tứ diện đều
D. Thập nhị diện đều
Khối đa diện mười hai mặt đều là khối đa diện đều loại:
A. {3;3}
B. {5;3}
C. {3;5}
D. {4;3}
Khối hai mươi mặt đều thuộc khối đa diện loại nào?
A. loại 3 ; 5
B. loại 5 ; 3
C. loại 3 ; 4
D. loại 4 ; 3
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y 2 + z − 2 2 = 9 ngoại tiếp khối bát diện (H) được ghép từ hai khối chóp tứ giác đều S.ABCD và S’.ABCD (đều có đáy là tứ giác ABCD). Biết rằng đường tròn ngoại tiếp của tứ giác ABCD là giao tuyến của mặt cầu (S) và mặt phẳng P : 2 x + 2 y − z − 8 = 0 . Tính thể tích khối bát diện (H)
A. V H = 34 9 .
B. V H = 665 81 .
C. V H = 68 9 .
D. V H = 1330 81 .
Cho khối đa diện có tất cả các mặt đều là tam giác và các mệnh đề nào sau đây:
(1). Số mặt của khối đa diện luôn là số chẵn. (2). Số cạnh của khối đa diện luôn là số lẻ.
Khẳng định nào sau đây là đúng ?
A. Chỉ có (1) đúng
B. Cả (1) và (2) sai.
C. Chỉ có (2) đúng.
D. Cả (1) và (2) đúng.