Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc và các cạnh OA = OB = OC = a, gọi I là trung điểm BC.
a) Chứng minh rằng: BC ⊥ (AOI), (OAI) ⊥ (ABC).
b) Tính góc giữa AB và mặt phẳng (AOI).
c) Tính góc giữa các đường thẳng AI và OB.
Cho khối chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a, tâm O cạnh bên bằng a 3 . Gọi M là trung điểm của CD, H là điểm đối xứng của O qua SM (tham khảo hình vẽ bên). Thể tích khối đa diện ABCDSH bằng
A. a 3 10 12
B. a 3 10 18
C. a 3 10 24
D. 5 a 3 10 24
Cho tứ diện OABC có OA = a, OB = 2a, OC = 3a đôi vuông góc với nhau tại O. Lấy M là trung điểm của cạnh CA; N nằm trên cạnh CB sao cho C N = 2 3 C B Tính theo a thể tích khối chóp OAMNB
A. 2 a 3
B. 1 6 a 3
C. 2 3 a 3
D. 1 3 a 3
Cho hình chóp OABC có OA, OB, OC đôi một vuông góc tại O và OA = 2, OB= 3, OC = 6. Thể tích của khối chóp bằng
A. 12
B. 6
C. 24
D. 36
Tứ diện OABC, có OA = a, OB = b, OC = c và đôi một vuông góc với nhau. Thể tích khối tứ diện OABC bằng
A . a b c 3
B . a b c
C . a b c 6
D . a b c 2
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và OA=a, OB = b, OC =c. Tính thể tích khối tứ diện OABC
A. abc
B. a b c 3
C. a b c 6
D. a b c 2
Cho tứ diện OABC biết OA, OB, OC đôi một vuông góc với nhau, biết OA=3, OB=4 và thể tích khối tứ diện OABC bằng 6. Khi đó khoảng cách từ O đến mặt phẳng (ABC) bằng:
A. 3
Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc với nhau OA=OB=OC=a. Gọi M là trung điểm của BC. Khoảng cách giữa hai đường thẳng OM và AB bằng
Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau, OA = a 2 2 , OB= OC =a. Gọi H là hình chiếu của điểm O trên mặt phẳng (ABC) Tính thể tích khối tứ diện OABH
A. a 3 2 6
B. a 3 2 12
C. a 3 2 24
D. a 3 2 48