Đáp án D
Ta có 4 hình nón được tạo bởi 4 tam giác cân quay quanh trục của nó.
Tam giác ADE
Tam giác CFB
Tam giác ABF
Tam giác CED
Đáp án D
Ta có 4 hình nón được tạo bởi 4 tam giác cân quay quanh trục của nó.
Tam giác ADE
Tam giác CFB
Tam giác ABF
Tam giác CED
Cho tam giác ABC vuông tại A. Đường thẳng d đi qua A và song song với BC. Cạnh BC quay xung quanh d tạo thành một mặt xung quanh của hình trụ có thể tích là V 1 . Tam giác ABC quay xung
quanh trục d được khối tròn xoay có thể tích là V 2 . Tính tỉ số V 1 V 2 .
A. 2 3
B. 1 3
C. 3
D. 3 2
Trong không gian cho tam giác OIM vuông tại I, I O M = 45 ° và cạnh IM = a Khi quay tam giác IOM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay. Khi đó diện tích xung quanh của hình nón tròn xoay đó bằng:
A. π a 2 3
B. π a 2
C. π a 2 2
D. π a 2 2 2
Trong không gian cho tam giác OIM vuông tại I, góc ∠ I O M = 45 0 và cạnh IM = a. Khi quay tam giác OIM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay. Tính diện tích xung quanh S x q của hình nón tròn xoay đó theo a.
A. S x q = π a 2 2
B. S x q = π a 2
C. S x q = π a 2 3
D. S x q = π a 2 2 2
Cho hình nón (N) có bán kính r = 20(cm), chiều cao h = 60(cm) và mọt hình trụ (T) nội tiếp hình nón (N) (hình trụ (T) có một đáy thuộc đáy hình nón và một đáy nằm trên mặt xung quanh của hình nón). Tính thể tích V của hình trụ (T) có diện tích xung quanh lớn nhất?
A. V=3000 π ( cm 3 ) .
B. V= 32000 9 π ( cm 3 ) .
C. V=3600 π ( cm 3 ) .
D. V=4000 π ( cm 3 ) .
Cho nội tiếp trong đường tròn tâm O, bán kính R có B A C ^ = 75 o ; A C B ^ = 60 o . Kẻ BH vuông góc với AC. Quay ∆ A B C quanh AC thì ∆ B H C tạo thành hình nón tròn xoay. Tính diện tích xung quanh của hình nón tròn xoay này
A. S x q = πR 2 3 2 3 - 1 2
B. S x q = πR 2 3 2 3 + 1 2
C. S x q = πR 2 3 4 3 - 1 2
D. S x q = πR 2 3 4 3 + 1 2
Cho hình trụ có trục O O ' , bán kính đáy r và chiều cao h = 3 r 2 . Hai điểm M, N di động trên đường tròn đáy (O) sao cho OMN là tam giác đều. Gọi H là hìn chiếu vuông góc của O trên mặt phẳng ( O ' M N ). Khi M, N di động trên đường tròn (O) thì đoạn thẳng OH tạo thành mặt xung quanh của một hình nón, tính diện tích S của mặt này.
A. S = 9 3 π r 2 32
B. S = 9 3 π r 2 16
C. S = 9 π r 2 32
D. S = 9 π r 2 16
Một hình trụ có bán kính đáy bằng r và khoảng cách giữa hai đáy bằng r 3 . Một hình nón có đỉnh là tâm mặt đáy này và đáy trùng với mặt đáy kia của hình trụ. Tính tỉ số diện tích xung quanh của hình trụ và hình nón.
A. 1 3
B. 3
C. 1 3
D. 3
Một hình trụ có bán kính đáy bằng r và khoảng cách giữa hai đáy bằng r 3 . Một hình nón có đỉnh là tâm mặt đáy này và đáy trùng với mặt đáy kia của hình trụ. Tính tỉ số diện tích xung quanh của hình trụ và hình nón.
A. 3
B. 1 3
C. 1 3
D. 3
Một hình trụ có bán kính đáy bằng r và khoảng cách giữa hai đáy bằng r 3 . Một hình nón có đỉnh là tâm mặt đáy này và đáy trùng với mặt đáy kia của hình trụ. Tính tỉ số diện tích xung quanh của hình trụ và hình nón.
A. 1 3
B. 3
C. 1 3
D. 3