Khi số đo hai cung lệch nhau k.2π (k ∈ Z) thì điểm cuối của chúng có thể trùng nhau.
Chẳng hạn các cung α = π/3 và β = π/3 + 2π , γ = π/3 - 2π có điểm cuối trùng nhau khi biểu diễn trên đường tròn lượng giác.
Khi số đo hai cung lệch nhau k.2π (k ∈ Z) thì điểm cuối của chúng có thể trùng nhau.
Chẳng hạn các cung α = π/3 và β = π/3 + 2π , γ = π/3 - 2π có điểm cuối trùng nhau khi biểu diễn trên đường tròn lượng giác.
Trên đường tròn lượng giác gốc A cho các cung có số đo:
Hỏi các cung nào có điểm cuối trùng nhau?
A. Chỉ (I) và (II).
B. Chỉ (I), (II) và (III).
C. Chỉ (II), (III) và (IV).
D. Chỉ (I), (II) và (IV).
Trên đường tròn lượng giác gốc A. Cho các cung lượng giác có điểm đầu A và có số đo như sau:
Các cung có điểm cuối trùng nhau là?
A. II và IV
B. I và II
C. I và III
D. I và IV
Khi biểu diễn trên đường tròn lượng giác các cung lượng giác nào trong các cung lượng giác có số đo dưới đây có cùng ngọn cung với cung lượng giác có số đo 42000
A.1300
B.1200
C.-1200
D.600
Trên đường tròn lượng giác hãy biểu diễn các cung có số đo
Trên đường tròn lượng giác gốc A, xác định các điểm M khác nhau biết rằng cung AM có số đo tương ứng là (trong đó k là một số nguyên tùy ý)
Chọn điểm A(1 ; 0) là điểm đầu của cung lượng giác trên đường tròn lượng giác. Tìm điểm cuối M của cung lượng giác có số đo 25π/4.
A. M là điểm chính giữa của cung phần tư thứ I.
B. M là điểm chính giữa của cung phần tư thứ II.
C. M là điểm chính giữa của cung phần tư thứ III.
D. M là điểm chính giữa của cung phần tư thứ IV.
Cho bốn cung (trên một đường tròn định hướng): Các cung nào có điểm cuối trùng nhau:
A. α và β; γ và δ.
B. β và γ; α và δ.
C. α, β, γ.
D. β, γ, δ.
Cho cung lượng giác AB có số đo là 15 rad. Tìm số lớn nhất trong các số đo của cung lượng giác điểm đầu A, điểm cuối B, có số đo âm.
Biểu diễn trên đường tròn lượng giác góc (cung) có số đo α:
a) α = 10350
b) α = 195π/3
c) α = π/2 + kπ, k∈Z
d) α = kπ