Đáp án D
Có A'.ABD là tứ diện đều cạnh a có
Đáp án D
Có A'.ABD là tứ diện đều cạnh a có
Cho hình chóp tam giác đều S.ABCD, cạnh đáy bằng a. Mặt bên tạo với mặt đáy một góc 60. Tính thể tích V của hình chóp S.ABCD. A)a³✓3/2 B)a³✓3/6 C)a³✓3/12 D)a³✓3/24
Cho hình hộp đứng A B C D . A ' B ' C ' D ' có tất cả các cạnh đều bằng a, A B C ^ = 45 0 . Tính thể tích V của khối hộp A B C D . A ' B ' C ' D ' .
Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm A' trên cạnh SA sao cho SA' = SA/3. Mặt phẳng qua A' và song song với đáy của hình chóp cắt cạnh SB, SC, SD lần lượt tại B', C', D'. Thể tích hình chóp S.A'B'C'D' bằng:
A. V/3 B. V/9
C. V/27 D. V/81.
Cho hình chóp S.ABC đáy ABC là tam giác vuông tại C, có cạnh AB a = , cạnh bên SA vuông góc mặt phẳng đáy và SA a = 3 . Tính thể tích V khối cầu ngoại tiếp hình chóp.
A. V= 2 2 3 3 a .
B. V= 3 4a .
C. V= 32 3 3 πa .
D. V= 4 3 3 πa .
Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng 2a, đáy ABCD là hình vuông. Hình chiếu của đỉnh A' trên mặt phẳng đáy trùng với tâm của đáy. Tính theo a thể tích V của khối hộp đã cho.
A. V = 4 2 a 3 3
B. V = 8 2 a 3
C. V = 8 a 3 3
D. V = 8 a 3 3
Hình hộp ABCD.A’B’C’D’ có các cạnh đều bằng a; các góc phẳng tại A đều bằng 60°. Tính thể tích V của tứ diện AB’CD’.
A. V = a 3 2 6
B. V = a 3 2 4
C. V = a 3 2 3
D. V = a 3 2 12
Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Khi đó thể tích hình chóp A.A'BCD' bằng:
A. a 3 /2 B. a 3 /3
C. a 3 /4 D. a 3 /6
Cho hình hộp ABCD.A'B'C'D' có đáy là hình chữ nhật, hình chiếu của A' lên đáy (ABCD) trùng với trung điểm của cạnh AD. Biết rằng AB = a, AD = 2a và thể tích hình hộp đã cho bằng 2 a 3 . Khoảng cách từ B đến mặt phẳng (A'DCB') bằng:
A. 2 a 6 B. 2 a 3
C. 3 a 3 D. a 2
Hình hộp chữ nhật ABCD.A’B’C’D’ có AC = a 3 , AD' = 2a, AB' = a 5 . Tính thể tích V của hình hộp.
A. V = 2 a 3 15
B. V = a 3 15 3
C. V = a 3 6
D. V = 3 a 3