Cho khối hộp ABCD.A′B′C′D′ có tất cả các cạnh bằng 2a, có đáy là hình vuông và cạnh bên tạo với mặt phẳng đáy khối hộp một góc bằng 60 o Thể tích khối hộp bằng
A. 8 a 3
B. 2 3 a 3
C. 8 3 a 3
D. 4 3 a 3
Cho (H) là khối lăng trụ đứng tam giác đều có tất cả các cạnh bằng a.
A. a 3 2 B. a 3 3 2
C. a 3 3 4 D. a 3 2 3
Cho hình hộp chữ nhật A B C D . A , B , C , D , có tâm I. Gọi V , V 1 lần lượt là thể tích của khối hộp A B C D . A , B , C , D , và khối chóp I . A B C D Tính tỉ số k = V 1 V .
Cho (H) Là khối chóp tứ giác đều có tất cả các cạnh bằng a.
A. a 3 2 B. a 3 2 2
C. a 3 3 4 D. a 3 3 2
Cho hình hộp ABCD.A'B'C'D' có đáy là hình chữ nhật, hình chiếu của A' lên đáy (ABCD) trùng với trung điểm của cạnh AD. Biết rằng AB = a, AD = 2a và thể tích hình hộp đã cho bằng 2 a 3 . Khoảng cách từ B đến mặt phẳng (A'DCB') bằng:
A. 2 a 6 B. 2 a 3
C. 3 a 3 D. a 2
Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng 2a, đáy ABCD là hình vuông. Hình chiếu của đỉnh A' trên mặt phẳng đáy trùng với tâm của đáy. Tính theo a thể tích V của khối hộp đã cho.
A. V = 4 2 a 3 3
B. V = 8 2 a 3
C. V = 8 a 3 3
D. V = 8 a 3 3
Cho hình lăng trụ ABC.A’B’C’ có tất cả các cạnh cùng bằng a, hình chiếu của C trên mặt phẳng (ABB’A’) là tâm của hình bình hành ABB’A’. Tính theo a thể tích khối cầu đi qua năm điểm A, B, B’, A’ và C
A. π 2 a 3 3
B. 8 π 2 a 3 81
C. π 2 a 3 24
D. π 2 a 3 81
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = b, AA’ = c. Gọi M và N theo thứ tự là trung điểm của A’B’ và B’C’. Tính tỉ số giữa thể tích khối chóp D’.DMN và thể tích khối hộp chữ nhật ABCD.A’B’C’D’
Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm A' trên cạnh SA sao cho SA' = SA/3. Mặt phẳng qua A' và song song với đáy của hình chóp cắt cạnh SB, SC, SD lần lượt tại B', C', D'. Thể tích hình chóp S.A'B'C'D' bằng:
A. V/3 B. V/9
C. V/27 D. V/81.