Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, đường cao S H = a 3 3 . Tính góc giữa cạnh bên và mặt đáy của hình chóp
Cho hình chóp S.ABCD có các cạnh bên bằng a, góc hợp bởi đường cao SH của hình chóp và các mặt bên của hình chóp đều bằng a (a thay đổi). Tìm giá trị lớn nhất của thể tích của S.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB và AD; H là giao điểm của CN và DM. Biết SH vuông góc với mặt phẳng (ABCD) và SH = a 3 . Tính thể tích khối chóp S.CDNM theo a.
Hình chóp tam giác đều S.ABC, △ A B C đều cạnh a, đường cao SH=a. Tính bán kính R của mặt cầu ngoại tiếp S.ABC
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, A B = a , A C = a 3 , B C = 2 a . Tam giác SBC cân tại S, tam giác SCD vuông tại C. Khoảng cách từ D đến mặt phẳng (SBC) bằng a 3 3 . Chiều cao SH của hình chóp là
A. a 15 5
B. a 15 3
C. 2 a 15
D. a 5 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD; H là giao điểm của CN với DM. Biết SH vuông góc với mặt phẳng (ABCD) và SH= a 3 . Tính khoảng cách giữa hai đường thẳng DM và SC theo a.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC. Biết rằng SH là đường cao của hình chóp đã cho và cạnh SC tạo với đáy hình chóp đó một góc bằng 60 ° . Thể tích hình chóp S.CDNM
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC. Biết rằng SH là đường cao của hình chóp đã cho và cạnh SC tạo với đáy hình chóp đó một góc bằng 60 ° . Tính khoảng cách giữa DM và SC.
Cho hình chóp S.ABC có đáy là tam giác ABC đều, đường cao SH với H nằm trong △ A B C và 2SH=BC, (SBC) tạo với mặt phẳng (ABC) một góc 60 0 . Biết có một điểm O nằm trên đường cao SH sao cho d(O;AB)=d(O;AC)=d(O;(SBC))=1. Tính thể tích khối cầu ngoại tiếp hình chóp đã cho.