Trong năm phép biến hình: Tịnh tiến, đối xứng tâm, đối xứng trục, phép quay và phép vị tự. Có bao nhiêu phép biến hình luôn biến một đường thẳng thành đường thẳng song song hoặc trùng với nó?
A. 1
B. 2
C. 3
D. 4
Cho hai điểm phân biệt A, B và đường thẳng d. Hãy tìm một phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm, phép quay, phép vị tự.
a. Biến A thành chính nó;
b. Biến A thành B;
c. Biến d thành chính nó.
Số phát biểuđúng:
1. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với nó
2. Phép biến hình biến mỗiđiểm M thành chính nó dọi là phép đồng nhất
3. Phép đối xứng trục, phép quay, phép tịnh tiến đều bảo toàn khoảng cách giữa hai điểm
4. Phép đối xứng tâm biến đường thẳng thành đường thẳng song song với nó
5. Phép vị tự là một phép đồng dạng
6. Phép biến hình F’ có được nhờ thực hiện liên tiếp các phép tịnh tiến, phép quay, phép vị tự là phép đồng dạng
7. Phép biến hình F’ có được nhờ thực hiện liên tiếp các phép tịnh tiến, phép quay, phép vị tự là phép dời hình
A.4
B.5
C. 6
D.7
Trong mặt phẳng tọa độ Oxy, cho các điểm A (1;1), B(0;3), C(2;4) .Xác định ảnh của tam giác ABC qua các phép biến hình sau.
(a)Phép tịnh tiến theo vector v = (2;1).
(b)Phép đối xứng qua trục Ox
(c)Phép đối xứng qua tâm I(2;1).
(d)Phép quay tâm O góc 90 o .
(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trụ Oy và phép vị tự tâm O tỉ số k = -2
Có bao nhiêu phép dời hình trong số bốn phép biến hình sau:
(I): Phép tịnh tiến.
(II): Phép đối xứng trục
(III): Phép vị tự với tỉ số -1.
(IV): Phép quay với góc quay 90 ∘ .
A. 3
B. 2
C. 4
D. 1
Hợp thành của một phép tịnh tiến và phép đối xứng tâm là phép biến hình nào trong các phép biến hình sau đây?
A. phép đối xứng trục
B. phép đối xứng tâm
C. phép quay
D. phép đồng nhất.
Hợp thành của một phép tịnh tiến và phép đối xứng tâm là phép biến hình nào trong các phép biến hình sau đây?
A. phép đối xứng trục
B. phép đối xứng tâm
C. phép quay
D. phép đồng nhất
Cho A(2; 3). Thực hiện liên tiếp phép tịnh tiến theo u → ( 1 ; 2 ) , phép quay tâm O góc quay π 2 , phép đối xứng tâm O, phép đối xứng trụcOx. Ảnh của A có tọa độ:
A. A(3;5)
B. B(–5;3)
C. C(5;–3)
D.D(5;3)
Cho vectơ v → đường thẳng d vuông góc với giá của v → . Gọi d’ là ảnh của d qua phép tịnh tiến theo vectơ v → 2 . Chứng minh rằng phép tịnh tiến theo vectơ v → là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d’.
Hướng dẫn. Dùng định nghĩa phép tịnh tiến và phép đối xứng trục.
Trong mặt phẳng tọa độ Oxy cho điểm A(-1;2) và đường thẳng d có phương trình 3 x + y + 1 = 0 . Tìm ảnh của A và d.
a. Qua phép tịnh tiến theo vectơ v=(2;1);
b. Qua phép đối xứng trục Oy;
c. Qua phép đối xứng qua gốc tọa độ;
d. Qua phép quay tâm O góc 90 o .