Số phát biểuđúng:
1. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với nó
2. Phép biến hình biến mỗiđiểm M thành chính nó dọi là phép đồng nhất
3. Phép đối xứng trục, phép quay, phép tịnh tiến đều bảo toàn khoảng cách giữa hai điểm
4. Phép đối xứng tâm biến đường thẳng thành đường thẳng song song với nó
5. Phép vị tự là một phép đồng dạng
6. Phép biến hình F’ có được nhờ thực hiện liên tiếp các phép tịnh tiến, phép quay, phép vị tự là phép đồng dạng
7. Phép biến hình F’ có được nhờ thực hiện liên tiếp các phép tịnh tiến, phép quay, phép vị tự là phép dời hình
A.4
B.5
C. 6
D.7
Trong năm phép biến hình: Tịnh tiến, đối xứng tâm, đối xứng trục, phép quay và phép vị tự. Có bao nhiêu phép biến hình luôn biến một đường thẳng thành đường thẳng song song hoặc trùng với nó?
A. 1
B. 2
C. 3
D. 4
Trong mặt phẳng tọa độ Oxy, cho các điểm A (1;1), B(0;3), C(2;4) .Xác định ảnh của tam giác ABC qua các phép biến hình sau.
(a)Phép tịnh tiến theo vector v = (2;1).
(b)Phép đối xứng qua trục Ox
(c)Phép đối xứng qua tâm I(2;1).
(d)Phép quay tâm O góc 90 o .
(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trụ Oy và phép vị tự tâm O tỉ số k = -2
Cho hai điểm phân biệt A, B và đường thẳng d. Hãy tìm một phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm, phép quay, phép vị tự.
a. Biến A thành chính nó;
b. Biến A thành B;
c. Biến d thành chính nó.
Số phát biểuđúng là:
1.Phép đối xứng qua điểm O là một phép dời hình.
2. Phép đối xứng qua điểm O là phép quay tâm O góc quay 180 °
3. Phép quay Q(O; α ) biến A thành M thì O cách đều A và M
4. Phép quay Q(O; α ) biến A thành M thì O thuộc đường tròn đường kính AM
5. Phép quay Q(O; α ) biến O thành chính nó
6.Phép quay Q(O; α ) biến (O;R) thành (O;2R)
7.Phép quay tâm O góc π 2 và phép quay tâm O góc 5 π 2 là hai phép quay giống nhau
A.4
B.5
C.6
D.7
Số phát biểuđúng là:
a) Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó
b) Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó là phép tịnh tiến
c) Phép tịnh tiến biến tứ giác thành tứ giác bằng nó
d) Phép tịnh tiến biến đường tròn thành chính nó
e) Phép đồng nhất biến mọi hình thành chính nó
f) Phép dời hình là 1 phép biến hình không làm thay đồi khoảng cách giữa hai điểm bất kì
g) Phép chiếu lên đường thẳng không là phép dời hình
h) Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có A’B = AB’.
i) Nếu phép dời hình F biến tam giác ABC thành tam giác A’B’C’ thì trọng tâm tam giác ABC biến thành trọng tâm tam giác A’B’C’.
k) Phép tịnh tiến theo vectơ là phép đồng nhất.
l) Nếu phép dời hình biến điểm A thành điểm B ( B ≠ A ) thì nó cũng biến điểm B thành A
m) Nếu phép dời hình biến điểm A thành điểm B và biến điểm B thành điểm C thì AB = BC
A.5
B.6
C.7
D.8
Số phát biểuđúng:
1. Qua phép vị tự có tỉ số k ≠ 0 , đường thẳng đi qua tâm vị tự sẽ biến thành chính nó
2. Qua phép vị tự có tỉ số k ≠ 0 , đường tròn có tâm là tâm vị tự sẽ biến thành chính nó.
3. Qua phép vị tự có tỉ số k ≠ 1 , không có đường tròn nào biến thành chính nó.
4. Qua phép vị tự V(O;1), đường tròn tâm O sẽ biến thành chính nó.
5. Phép vị tự tỉ số k biến đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đó
6. Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với hệ số k
7. Trong phép vị tự tâm O, tỉ số k, nếu k < 0 thì điểm M và ảnh của nó ở về hai phía đối với tâm O.
8. Mọi phép dời hình đều là phép đồng dạng với tỉ số k = 1
9. Phép hợp thành của một phép vị tự tỉ số k và một phép đối xứng tâm là phép đồng dạng tỉ số
10. Hai đường tròn bất kì luôn có phép vị tự biến đường này thành đường kia
11. Khi k = 1 , phép vị tự là phép đồng nhất
12. Phép vị tự biến tứ giác thành tứ giác bằng nó
13. Khi k = 1, phép đồng dạng là phép dời hình
14. Phép đối xứng tâm là phép đồng dạng tỉ số k = 1
A.9
B.10
C.11
D.12
Trong mặt phẳng Oxy, cho v → = ( 2 ; 0 ) và điểm M(1; 1).
a) Tìm tọa độ của điểm M’ là ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép tịnh tiến theo vectơ v →
b) Tìm tọa độ của điểm M" là ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ v → và phép đối xứng qua trục Oy.
Trong mặt phẳng tọa độ Oxy cho điểm A(-1;2) và đường thẳng d có phương trình 3 x + y + 1 = 0 . Tìm ảnh của A và d.
a. Qua phép tịnh tiến theo vectơ v=(2;1);
b. Qua phép đối xứng trục Oy;
c. Qua phép đối xứng qua gốc tọa độ;
d. Qua phép quay tâm O góc 90 o .