\(\dfrac{2^8\cdot9^3}{6^4\cdot4^3}=\dfrac{2^8\cdot3^6}{2^4\cdot3^4\cdot2^6}=\dfrac{2^8\cdot3^6}{2^{10}\cdot3^4}=\dfrac{3^2}{2^2}=\dfrac{9}{4}\)
\(12^5\div\left(2^6\cdot3^8\right)=2^{10}\cdot3^5\div\left(2^6\cdot3^8\right)=\dfrac{2^{10}\cdot3^5}{2^6\cdot3^8}=\dfrac{2^4}{3^3}=\dfrac{16}{27}\)
\(\dfrac{3^{12}\cdot2^{14}\cdot5^5}{10^5\cdot6^8\cdot12^4}=\)\(\dfrac{3^{12}\cdot2^{14}\cdot5^5}{5^5\cdot2^5\cdot2^8\cdot3^8\cdot2^8\cdot3^4}=\)\(\dfrac{3^{12}\cdot2^{14}\cdot5^5}{5^5\cdot2^{21}\cdot3^{12}}=\dfrac{1}{2^7}=\dfrac{1}{128}\)
1) \(\dfrac{2^8\cdot9^3}{6^4\cdot4^3}=\dfrac{2^8\cdot3^6}{2^4\cdot2^6\cdot3^4}=\dfrac{3^2}{2^2}=\dfrac{9}{4}\)
2) \(12^5:\left(2^6\cdot3^8\right)=\dfrac{2^{10}\cdot3^5}{2^6\cdot3^8}=\dfrac{2^4}{3^3}=\dfrac{16}{27}\)
\(\dfrac{3^{12}\cdot2^{14}\cdot5^5}{10^5\cdot6^8\cdot12^4}=\dfrac{3^{12}\cdot2^{14}\cdot5^5}{5^5\cdot2^{21}\cdot3^{12}}=\dfrac{1}{128}\)