hoành độ giao điểm của đường thẳng y= 1- x và Parabol y = x2 - 2x + 1
tọa độ giao điểm của đường thẳng d: y= -x + 4 và Parabol y = x2 - 7x + 12
Cho hàm số y=x²-mx-3(1) a/Tìm m để đồ thị hàm số (1) cắt Õ tại điểm có hoành độ bằng 3 b/lập bảng biến thiên và vẽ đồ thị khi m=-2 c/Tìm tọa độ giao điểm (P) với đường thẳng (d)y=2x+9 d/tìm m để parabol của hàm số có đỉnh nằm trên trục Ox
Câu 14(1,5 điểm): a) Vẽ trên cùng một mặt phẳng tọa độ Oxy đồ thị của các hàm số sau: y = - 2x + 5 ; y = x + 2 b) Tìm tọa độ giao điểm A của đường thẳng y = - 2x + 5 và y=x+2. c) Tính góc tạo bởi đường thẳng y = x + 2y với trục Ox. d) Xác định đường thẳng y = ax + b đi qua điểm A và song song với đường thẳng y = - 3x - 1
xác định toạ độ của đỉnh và các giao điểm với trục tung, trục hoành a, x^2-4x+3 b, y=-x^2+2x
Cho parabol (P) = x2+5x+2 và đường thẳng (d) y= mx
a. Vẽ (P)và d trên cùng hệ trục tọa độ
b. Tìm điều kiện của m để d cắt (P) tại 2 điểm phân biệt sao cho một điểm có
hoành độ bằng 1
Trong mặt phẳng Oxy, cho điểm A(2;-4), đường thẳng Δ: x = -3 + 2t, y = 1 + t và đường tròn (C): x^2 + y^2 – 2x – 8y – 8 = 0.
a. Tìm một vectơ pháp tuyến n của đường thẳng Δ. Lập phương trình tổng quát của đường thẳng d, biết d đi qua điểm A và nhận n làm vectơ pháp tuyến.
b. Viết phương trình đường tròn (T), biết (T) có tâm A và tiếp xúc với Δ.
c. Gọi P, Q là các giao điểm của Δ và (C). Tìm toạ độ điểm M thuộc (C) sao cho tam giác MPQ cân tại M.
Trong phương vuông góc với Tọa độ Oxy, cho parabol (P): y = x² - 4mx + 3m² + 1, điểm A (0;3m) và đường thẳng (d): y = 2x + 3m-2 với m là tham số. Giả sử giao điểm của (d) và (P) là hai điểm M và N thì diện tích tam giác AMN bằng 4. Tìm giá trị của m
Xác định trục đối xứng, tọa độ đỉnh, giao điểm với trục tung và trục hoành của parabol.
y = 2 x 2 - x - 2
Xác định trục đối xứng, tọa độ đỉnh, giao điểm với trục tung và trục hoành của parabol.
y = - 2 x 2 - x + 2