b: Thay x=1 vào (P), ta được:
\(y=1^2+5\cdot1+2=1+5+2=8\)
Thay x=1 và y=8 vào (d), ta được:
\(m\cdot1=8\)
hay m=8
b: Thay x=1 vào (P), ta được:
\(y=1^2+5\cdot1+2=1+5+2=8\)
Thay x=1 và y=8 vào (d), ta được:
\(m\cdot1=8\)
hay m=8
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) :y=mx-3 tham số m và Parabol (P): y=y2 . Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có hoành độ lần lượt là x1,x2 thỏa mãn |x1-x2|=2
Cho hàm số y=x²-mx-3(1) a/Tìm m để đồ thị hàm số (1) cắt Õ tại điểm có hoành độ bằng 3 b/lập bảng biến thiên và vẽ đồ thị khi m=-2 c/Tìm tọa độ giao điểm (P) với đường thẳng (d)y=2x+9 d/tìm m để parabol của hàm số có đỉnh nằm trên trục Ox
Cho parabol (P): y = x 2 − 4x + 3 và đường thẳng d: y = mx + 3. Tìm giá trị thực của tham số m để d cắt (P) tại hai điểm phân biệt A, B có hoành độ x 1 , x 2 thỏa mãn x 1 3 + x 2 3 = 8
A. m = 2
B. m = -2
C. m = 4
D. Không có m
Cho parabol (P): y = x 2 − 4x + 3 và đường thẳng d: y = mx + 3. Tìm tất cả các giá trị thực của mm để d cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 9 2 .
A. m = 7.
B. m = −7.
C. m = −1,m = −7.
D. m = −1
Xác định tọa độ giao điểm của parabol y = ax2 + bx + c với trục tung. Tìm điều kiện để parabol này cắt trục hoành tại hai điểm phân biệt, tại mỗi điểm và viết tọa độ của các giao điểm trong mỗi trường hợp.
Tìm m sao cho đường thẳng (d): y = -2x cắt Parabol (P): y = x2 -2mx+m2-1 tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 sao cho biểu thức P bằng x1 bình phương cộng x2 bình phương đạt giá trị nhỏ nhất. A. m= 2 B. m=1 C. m=-2 D. m= -1
Trong mặt phẳng với hệ tọa độ Oxy , cho điểm M (2;1) và đường thẳng d: x-y+1=0. Viết phương trình đường tròn đi qua M cắt d ở 2 điểm A, B phân biệt sao cho tam giác MAB vuông tại M và có diện tích bằng 2.
Cho hàm số y = f(x) = mx + 2m − 3 có đồ thị (d). gọi A, B là hai điểm thuộc đồ thị
và có hoành độ lần lượt là −1 và 2.
1 Xác định tọa độ hai điểm A và B.
2 Tìm m để cả hai điểm A và B cùng nằm phía trên trục hoành.
3 Tìm điều kiện của m để f(x) > 0, ∀x ∈ [−1; 2]
Cho đường thẳng (d): y = x - 1 và parabol (P): y = x² + (2m + 1) - 3m² - 1 . Tim m để (d) cắt (P) tại hai điểm phân biệt A và B sao cho tam giác OAB có diện tích bằng 6