Đáp án D
Ta có: y ' = 4 x 3 − 4 x = 4 x x 2 − 1 > 0 ⇔ x ∈ − 1 ; 0 ∪ 1 ; + ∞ ⇒ Hàm số đồng biến trên các khoảng − 1 ; 0 và 1 ; + ∞
Đáp án D
Ta có: y ' = 4 x 3 − 4 x = 4 x x 2 − 1 > 0 ⇔ x ∈ − 1 ; 0 ∪ 1 ; + ∞ ⇒ Hàm số đồng biến trên các khoảng − 1 ; 0 và 1 ; + ∞
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Cho hàm số y = f(x) có đồ thị của hàm số y = f '(x) được cho như hình bên và các mệnh đề sau:
(1). Hàm số y = f(x) đồng biến trên khoảng (-1;0)
(2). Hàm số y = f(x) nghịch biến trên khoảng (1;2)
(3). Hàm số y = f(x) đồng biến trên khoảng (3;5)
(4). Hàm số y = f(x) có hai điểm cực đại và một điểm cực tiểu.
Số mệnh đề đúng là
A. 1
B. 3
C. 4
D. 2
Cho hàm số y = f(x) có đạo hàm trên các khoảng (-1;0); (0;5) và có bảng biến thiên như hình bên. Phương trình f(x) = m có nghiệm duy nhất trên (-1;0) ∪ (0;5) khi và chỉ khi m thuộc tập hợp
A. ( 4 + 2 5 ; 10 )
B. - ∞ ; - 2 ∪ { 4 + 2 5 } ∪ [ 10 + ∞ )
C. - ∞ ; - 2 ∪ [ 4 + 2 5 ; + ∞ )
D. - ∞ ; - 2 ∪ [ 10 + ∞ )
Cho hàm số y = f ( x ) liên tục trên ℝ \ − 1 ; 0 thỏa mãn f ( 1 ) = 2 ln 2 + 1 , x ( x + 1 ) f ' ( x ) + ( x + 2 ) f ( x ) = x ( x + 1 ) , ∀ x ∈ ℝ \ − 1 ; 0 . Biết f ( 2 ) = a + b ln 3 , với a, b là hai số hữu tỉ. Tính T = a 2 − b
A. T = − 3 16 .
B. T = 21 16 .
C. T = 3 2 .
D. T = 0
Cho hàm số y=f(x) liên tục, có đạo hàm trên [-1;0]. Biết f’(x) = (3x2+2x)e-f(x) ∀ x ∈ - 1 ; 0 Tính giá trị biểu thức A=f(0)-f(-1)
Biết F(x) là một số nguyên hàm của hàm số f(x) trên đoạn [-1;0], F - 1 = - 1 ; F 0 = 0 và ∫ - 1 0 2 3 x F ( x ) dx = - 1 . Tính I= ∫ - 1 0 2 3 x f ( x ) dx .
A. 1 8 - 3 ln 2
B. 1 8 + ln 2
C. 1 8 + 3 ln 2
D. - 1 8 + 3 ln 2
Với giá trị nào của m thì hàm số y = x 3 + ( m + 1 ) x 2 - ( 3 m + 2 ) x + 4 đồng biến trên khoảng ( 0 ; 1 )
A. m ≤ - 2 3
B. m ≥ - 2 3
C. m ≤ 3
D. m ≥ 3
Cho tứ diện ABCD có A(0;1;-1), B(1;1;2), C(1;-1;0), D(0;0;1). Tính độ dài đường cao AH của hình chóp ABCD.
A. 3 2
B. 2 2
C. 2 2
D. 3 2 2
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình dưới đây:
Xét các mệnh đề sau:
(I). Hàm số nghịch biến trên khoảng (0;1)
(II). Hàm số đồng biến trên khoảng (-1;2)
(III). Hàm số có ba điểm cực trị
(IV). Hàm số có giá trị lớn nhất bằng 2.
Số mệnh đề đúng trong các mệnh đề trên là:
A. 4
B. 2
C. 3
D. 1
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1], thỏa mãn ( f ' ( x ) ) 2 + 4 f ( x ) = 8 x 2 + 4 , ∀ x ∈ [ 0 ; 1 ] và f(1) = 2. Tính ∫ 0 1 f ( x ) d x
A . 1 3
B. 2.
C . 4 3
D . 21 4