Hàm số y = f(x) có đúng 3 điểm cực trị là -2;-1 và 0. Hỏi hàm số y = f x 2 - 2 x có bao nhiêu điểm cực trị?
A. 3
B. 4
C. 5
D. 6
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ a ; b . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau ?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' x 0 = 0
(2) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = f " x 0 = 0 thì điểm x 0 không là điểm cực trị của hàm số y = f x
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f(x)
(4) Nếu hàm số y = f(x) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' x 0 = 0 , f " x 0 > 0 thì điểm x 0 là điểm cực đại của hàm số y = f(x)
A. 1
B. 2
C. 0
D. 3
Cho hàm số y = f(x) có đạo hàm f ' ( x ) = x ( x 2 − 1 ) 2 ( x + 2 ) 3 . Khi đó số điểm cực trị của hàm số y = f x 2 là bao nhiêu?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y=f(x) liên tục trên R, có đạo hàm f ’ ( x ) = x ( x – 1 ) 2 ( x + 1 ) 3 . Đồ thị hàm số y=f(x) có bao nhiêu điểm cực trị?
A. Đồ thị hàm số f(x) không có điểm cực trị
B. Đồ thị hàm số f(x) có 1 điểm cực trị
C. Đồ thị hàm số f(x) có 2 điểm cực trị
D. Đồ thị hàm số f(x) có 3 điểm cực trị
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số y = - x 3 + 3 x 2 + 3 ( m 2 - 1 ) x - 3 m 2 - 1 . Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có điểm cực đại và điểm cực tiểu nằm bên trái đường thẳng x=2
A. 3
B. 1
C. 2
D. 0
Cho hàm số y=f(x) có đúng ba điểm cực trị là 0; 1; 2 và có đạo hàm liên tục trên R. Khi đó hàm số y = f 4 x - 4 x 2 có bao nhiêu điểm cực trị?
A.5
B.2
C.3
D.4
Cho hàm số y = f x liên tục trên khoảng a ; b và x 0 ∈ a ; b . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau
1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' x 0 = 0 .
2) Nếu hàm số y = f x có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thoả mãn điều kiện f ' x 0 = f ' ' x 0 = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f x .
3) Nếu f ' x đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f x .
4) Nếu hàm số y = f x có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thoả mãn điều kiện f ' x 0 = 0 , f ' ' x 0 > 0 thì điểm x 0 là điểm cực đại của hàm số y = f x .
A. 0.
B. 1.
C. 2.
D. 3.
Cho hàm số y=f(x) liên tục trên R có đạo hàm cấp 3 với f’’’(x)=0 và thỏa mãn f ( x ) ' 2018 1 - f ' ' ( x ) = 2 x ( x + 1 ) 2 ( x - 2018 ) 2019 : f ' ' ( x ) , ∀ x ∈ R Hàm số g ( x ) = f ' ( x ) 2019 1 - f ' ' ( x ) có bao nhiêu điểm cực trị?
A. 1
B.2
C.3
D. 4
Cho hàm số y = f(x) có bảng biến thiên như sau:
(I): Tập xác định của f(x): R \ {1}
(II): Hàm số f(x) có đúng 1 điểm cực trị
(III): min f(x) = -2
(IV): A(-1; 3) là điểm cực đại của đồ thị hàm số
Trong các phát biểu trên, có bao nhiêu phát biểu đúng?
A. 2
B. 3
C. 1
D. 0