Đáp án D
Với mọi x 1 , x 2 ∈ ℝ , x 1 > x 2 thì f x 1 > f x 2 ⇒ f x đồng biến trên ℝ
Trong 4 hàm số đã cho có hàm số f x = x 3 + x 2 + 3 x + 1 có f ' x = 3 x 2 + 2 x + 3 > 0 ∀ x ∈ ℝ
Do đó hàm số f x = x 3 + x 2 + 3 x + 1 đồng biến trên ℝ
Đáp án D
Với mọi x 1 , x 2 ∈ ℝ , x 1 > x 2 thì f x 1 > f x 2 ⇒ f x đồng biến trên ℝ
Trong 4 hàm số đã cho có hàm số f x = x 3 + x 2 + 3 x + 1 có f ' x = 3 x 2 + 2 x + 3 > 0 ∀ x ∈ ℝ
Do đó hàm số f x = x 3 + x 2 + 3 x + 1 đồng biến trên ℝ
Cho hàm số f ( x ) liên tục trên ℝ và f ( x ) ≠ 0 với mọi x ∈ ℝ thỏa mãn f ' ( x ) = ( 2 x + 1 ) . f 2 ( x ) v à f ( 1 ) = - 0 , 5 . Biết tổng f ( 1 ) + f ( 2 ) + f ( 3 ) + . . . + f ( 2017 ) = a b ; ( a ∈ ℝ ; b ∈ ℝ ) v ớ i a b tối giản. Mệnh đề nào dưới đây đúng?
A. b - a = 4035
B. a + b = - 1
C. a b < - 1
D. a ∈ - 2017 ; 2017
Cho hàm số f(x) thỏa mãn f(x).f '(x)=1 với mọi x ∈ ℝ Biết ∫ 1 2 f ( x ) d x = a và f(1)=b,f(2)=c. Tích phân ∫ 1 2 x f ( x ) d x bằng
A. 2c-b-a
B. 2a-b-c
C. 2c-b+a
D. 2a-b+c
Cho hàm số y = f ( x ) liên tục trên ℝ \ − 1 ; 0 thỏa mãn f ( 1 ) = 2 ln 2 + 1 , x ( x + 1 ) f ' ( x ) + ( x + 2 ) f ( x ) = x ( x + 1 ) , ∀ x ∈ ℝ \ − 1 ; 0 . Biết f ( 2 ) = a + b ln 3 , với a, b là hai số hữu tỉ. Tính T = a 2 − b
A. T = − 3 16 .
B. T = 21 16 .
C. T = 3 2 .
D. T = 0
Cho hàm số f(x) thỏa mãn f(1) = 1/3 và f ' x = x f x 2 với mọi x ϵ ℝ. Giá trị f(2) bằng
A. 16/3
B. 3/16
C. 2/3
D. 3/2
Cho hàm số f(x) liên tục trên ℝ + thỏa mãn f ' x ≥ x + 1 x , ∀ x ∈ ℝ + và f(1) = 1. Tính giá trị nhỏ nhất của f(2).
A. 3
B. 2
C. 5 2 + ln 2
D. 4
Cho hàm số f(x) thỏa mãn f ( 2 ) = - 1 5 và f ' ( x ) = x 3 [ f ( x ) ] 2 với mọi x thuộc R. Giá trị của f(1) bằng
A. - 4 35
B. - 79 20
C. - 4 5
D. - 71 20
Hàm số y = f ( x ) có đạo hàm f ' ( x ) = ( x - 1 ) 2 ( x - 3 ) với mọi x . Phát biểu nào sau đây đúng?
A. Hàm số có 1 điểm cực đại
B. Hàm số không có điểm cực trị
C. Hàm số có hai điểm cực trị
D. Hàm số có đúng một điểm cực trị
Cho hàm số f(x) thỏa mãn f ( 2 ) = - 2 9 và f ' ( x ) = 2 x [ f ( x ) ] 2 với mọi giá trị x thuộc R Giá trị của f(1) bằng
A. - 35 36
B. - 2 3
C. - 19 36
D. - 2 15
Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thỏa mãn f ' ( x ) = ( 1 - x ) ( x + 2 ) g ( x ) + 2018 với g ( x ) < 0 , ∀ x ∈ R . Hàm số y = f ( 1 - x ) + 2018 x + 2019 nghịch biến trên khoảng nào dưới đây?
A . ( 1 ; + ∞ ) .
B . ( 0 ; 3 ) .
C . ( - ∞ ; 3 ) .
D . ( 4 ; + ∞ ) .
Cho hàm số f(x) có đạo hàm không âm trên [0;1] thỏa mãn ( [ f ( x ) ] 2 [ f ' ( x ) ] 2 ) e 2 x = 1 + [ f ( x ) ] 2 và f(x)> 0 với ∀x∈[0;1], biết f(0)=1. hãy chọn khẳng định đúng trong các khẳng định sau
A. 5 2 <f(1)< 3
B. 3<f(1)< 7 2
C. 2<f(1)< 5 2
D. 3 2 <f(1)< 2