Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x ( x - 1 ) 2 ( x - 2 ) . Hỏi hàm số y = f 5 x x 2 + 4 đồng biến trên khoảng nào dưới đây ?
A. ( - ∞ ; - 2 ) .
B. (0;2).
C. (2;4).
D. (-2;1)
Cho hàm số y = f(x) có f ' ( x ) = ( x - 2 ) ( x + 5 ) ( x + 1 ) . Hàm số y = f ( x 2 ) đồng biến trên khoảng nào dưới đây?
A. (-2;-1).
B. (-2;0).
C. (0;1).
D. (-1;0).
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Hàm số y=f(x) có đạo hàm f ' ( x ) = x ( x - 1 ) 2 ( x - 2 ) , ∀ x ∈ R . Hàm số y=f(x) nghịch biến trên khoảng nào dưới đây ?
A. ( 2 ; + ∞ ) .
B. (0;2).
C. ( - ∞ ; 0 ) .
D. ( 1 ; + ∞ ) .
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x 2 ( x - 1 ) ( x - 4 ) g ( x ) , trong đó g ( x ) > 0 , ∀ x . Hàm số y = f ( x 2 ) đồng biến trên khoảng nào dưới đây?
A. ( - ∞ ; - 2 ) .
B. (-1;1).
C. (-2;-1).
D. (1;2).
Cho hàm số y=f(x) có bảng xét dấu của đạo hàm như sau.
x -∞ -2 -1 2 4 +∞
f’(x) + 0 - 0 + 0 - 0 +
Hàm số y =-2f(x)+2019 nghịch biến trên khoảng nào trong các khoảng dưới đây?
A. (-4 ;2)
B. (-1 ;2)
C. (-2 ;-1)
D. (2 ;4)
Cho hàm số y=f(x) , có đồ thị hàm số y=f'(x) có bảng xét dấu sau:
Hàm số y = 3 f ( x + 2 ) - x 3 + 3 x đồng biến trên khoảng nào dưới đây?
A. ( 1 ; + ∞ )
B. ( - ∞ ; - 1 )
C. (0;2)
D. (-1;0)
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ dưới đây
Hàm số y=f(3-x) đồng biến trên khoảng nào dưới đây ?
A. ( - ∞ ; 0 ) .
B. (4;6).
C. (-1;5).
D. (0;4).
Cho hàm số y = f x liên tục trên ℝ và có đạo hàm f ' x = 2 - x 2 x - 1 3 3 - x . Hàm số y = f x đồng biến trên khoảng nào dưới đây?
A. 3 ; + ∞
B. - ∞ ; 1
C. - ∞ ; 2
D. ( 1;2)
Cho hàm số y = f ( x ) , hàm số y = f ' ( x ) có đồ thị như hình vẽ dưới đây. Hỏi hàm số y = f x 2 − 1 đồng biến trên khoảng nào?
A. − ∞ ; − 2
B. (-1;1)
C. 1 ; 2
D. (0;1)