2 tiếp tuyến ại B và C của 1 đường tròn tâm O cắt nhau tại A,lấy điểm M thuộc dây DC sao cho MB >MC. Đường thẳng vuông góc với OM tại M. Cắt AB ở I, cắt AC kéo dài ở K, C/m:
A, tứ giác OMIB và OMCK nội tiếp
B,góc OIM= góc OKM, M là trung điểm IK.
giúp mình với mai mình thi rồi:((
Cho đường tròn (O; R) và điểm M nằm ngoài (O). Kẻ hai tiếp tuyến MB, MC của (O) và tia Mx
nằm giữa hai tia MO và MC. Qua B kẻ đường thẳng song song với Mx, đường thẳng này cắt (O) tại
điểm thứ hai là A; AC cắt Mx tại I. Vẽ đường thẳng vuông góc với đường kính BB’ tại O, đường này
cắt MC, B’C lần lượt tại K và E.
a) Chứng minh tứ giác MOIC là tứ giác nội tiếp.
b) Chứng minh OI vuông góc với Mx và ME = R.
c) Tìm quỹ tích điểm K khi M di động mà OM = 2R.
Cho đường tròn tâm O và điểm A không thuộc đường tròn. Kẻ các tiếp tuyến AB, AC. Lấy điểm M thuộc dây BC. Đường thẳng qua M vuông góc với OM cắt tia Ab tại D và cắt tia AC tại E.
a)Chứng minh rằng tứ giác BDOM, ECOM là tứ giác nội tiếp.
b) M là trung điểm của DE
Từ một điểm M nằm ngoài (O;R) với OM > 2R. Vẽ hai tiếp tuyến MA, MB với (O). Gọi I là trung điểm của AM, BI cắt (O) tại C, tia MC cắt (O) tại D.
a) Chứng minh OM vuông góc AB tại H và IA^2 = IB.IC.
b) Chứng minh BD // AM
c) Chứng minh tứ giác AHCI nội tiếp và CA là tia phân giác của góc ICD.
d) AO cắt BD tại K. Chứng minh ba đường thẳng MD, AB và IK đồng quy tại một điểm.
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại D. Vẽ OM vuông góc với BC tại M. a) Chứng minh tứ giác AOMD nội tiếp. b) Tia OM cắt đường tròn (O) tại điểm N, AN và BC cắt nhau tại I. Chứng minh AN là tia phân giác của góc BAC và AD=DI c) Tia phân giác của ABC cắt AN tại H. Giả sử dây AB cố định và điểm C di chuyển trên đường tròn (O) sao cho tam giác ABC nhọn (AB
Câu 4:( 4 điểm ) Từ điểm M nằm ngoài đường tròn ( O,R ) sao cho OM = 3R, vẽ các tiếp tuyến MA, MB với đường tròn ( O,R ) (A, B là các tiếp điểm). a ) Chứng minh: Tứ giác MAOB nội tiếp và OM là đường trung trực của đoạn AB. b ) Tính độ dài đoạn thẳng MA, AB theo R. c) Vẽ dây AC song song MB, đường thẳng MC cắt đường tròn (O,R) tại điểm thứ hai là D, tia AD cắt MB tại E. Chứng minh: E là trung điểm của đoạn MB
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp; b) Góc AQI = ACO; c) CN = NH d)tia AN cắt MC tại E. CM tứ giác COBE nội tiếp