Chọn D.
f’(x) = 4cos2x – 5 < 0 suy ra hs luôn nghịch biến
Suy ra
tại x = π/2.
Chọn D.
f’(x) = 4cos2x – 5 < 0 suy ra hs luôn nghịch biến
Suy ra
tại x = π/2.
Cho hàm số y=f(x) liên tục trên đoạn [0;π/3].Biết f’(x).cosx+f(x).sinx=1, x ϵ [0;π/3] và f(0)=1. Tính tích phân I = ∫ 0 π 3 f x d x
A. 1/2 + π/3
B. 3 + 1 2
C. 3 - 1 2
D. 1/2
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn f(0)=0, ∫ 0 π 4 f ' x 2 d x = 2 và ∫ 0 π 4 sin 2 x f ( x ) d x = 1 2 Tích phân ∫ 0 π 4 f x d x bằng
A. -1/2
B. 1/2
C. -1/4
D. 1/4
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn f π 4 = 3 , ∫ 0 π 4 f x cos x d x = 1 và ∫ 0 π 4 sin x . tan x . f x d x = 2 Tích phân ∫ 0 π 4 sin x f ' x d x bằng
A. 4.
B. 2 + 3 2 2
C. 1 + 3 2 2
D. 6.
Cho hàm số y=f(x) liên tục trên đoạn [0;π] thỏa mãn ∫ 0 π f ( x ) d x = ∫ 0 π c o s x f ( x ) d x = 1 . Giá trị nhỏ nhất của tích phân ∫ 0 π f 2 ( x ) d x bằng
A. 3 2 π
B. 2 π
C. 3 π
D. 4 π
Cho hàm f(x) có đạo hàm trên đoạn [ 0 ; π ] , f ( 0 ) = π , ∫ 0 π f ' ( x ) dx = 3 π . Tính f ( π )
A. f ( π ) = 0
B. f ( π ) = - π
C. f ( π ) = 4 π
D. f ( π ) = 2 π
Cho hàm số f ( x ) = a x 4 + b x 2 + c có m i n ( - ∞ ; 0 ) f ( x ) = f ( - 1 ) . Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [ 1 2 ;2] bằng
A. c + 8a
B. c - 7 16 a
C. c + 9 16 a
D. c - a
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên R. Giá trị của biểu thức f(F(0)) bằng
A. 9e
B. 3e
C. 20 e 2
D. - 1 e
Cho hàm số F(x) là một nguyên hàm của hàm số f x = 2 cos x − 1 sin 2 x trên khoảng 0 ; π Biết rằng giá trị lớn nhất của F(x) trên khoảng 0 ; π là 3 . Chọn mệnh đề đúng trong các mệnh đề sau?
A. F π 6 = 3 3 − 4
B. F 2 π 3 = 3 2
C. F π 3 = − 3
D. F 5 π 6 = 3 − 3
Cho hàm số f (x) có đạo hàm cấp hai liên tục trên đoạn [0;1] thoả mãn [ f ' ( x ) ] 2 + f ( x ) f '' ( x ) ≥ 1 , ∀ x ∈ [ 0 ; 1 ] và f 2 ( 0 ) + f ( 0 ) . f ' ( 0 ) = 3 2 . Giá trị nhỏ nhất của tích phân ∫ 0 1 f 2 ( x ) d x bằng
A. 5 2
B. 1 2
C. 11 6
D. 7 2