giải các phương trình sau:
a)(√x+1+1)3+2√x−1=2−x(x+1+1)3+2x−1=2−x
b)x3=x4+x3+x2+x+2x3=x4+x3+x2+x+2
c)2(x2+x+1)2−7(x−1)2=13(x3−1)2(x2+x+1)2−7(x−1)2=13(x3−1)
d)8x2+√1x=52
Cho pt: x^3 - mx^2 -x +m=0
Tìm m để: a) pt có 3 nghiệm phân biệt x1, x2, x3 thỏa mãn x1^2 + x2^2 + x3^2 <= 2 (bé hơn hoặc bằng)
b) pt có 2 nghiệm phân biệt
c) pt có 3 nghiệm x1, x2, x3 sao cho 1/ x1 + 1/x2 + 1/x3 =4
cho phương trình (x+1)(x+2)(x+3)(x+4)=m
biết rằng phương trình đã cho có 4 nghiệm phân biệt x1,x2,x3,x4x1,x2,x3,x4
chứng minh x1.x2.x3.x4=24−m
Gọi x1 , x2 là nghiệm của pt x^2+2009x+1=0 và x3,x4 là nghiệm của pt x^2 +2010 +1=0
Tính giá trị biểu thức (x1+x3)(x2+x3)(x1-x4)(x2-x4)
Mọi người làm nhanh hộ e với ạ, T7 e nộp r![]()
Bài 1.
Tính:
a. x2(x–2x3) b. (x2+ 1)(5–x) c. (x–2)(x2+ 3x–4) d. (x–2)(x–x2+ 4)
e. (x2–1)(x2+ 2x) f. (2x–1)(3x + 2)(3–x) g. (x + 3)(x2+ 3x–5)
h (xy–2).(x3–2x–6) i. (5x3–x2+ 2x–3).(4x2–x + 2)
Bài 2.
Tính:
a. (x–2y)2 b. (2x2+3)2 c. (x–2)(x2+ 2x + 4) d. (2x–1)2
Bài 3: Rút gọn biểu thức
a.(6x + 1)2+ (6x–1)2–2(1 + 6x)(6x–1)
b. x(2x2–3)–x2(5x + 1) + x2.
c. 3x(x–2)–5x(1–x)–8(x2–3)
Bài 4: Tìm x, biết
a. (x–2)2–(x–3)(x + 3) = 6.
b. 4(x–3)2–(2x–1)(2x + 1) = 10
c. (x–4)2–(x–2)(x + 2) = 6.
d. 9 (x + 1)2–(3x–2)(3x + 2) = 10
Bài 5:Phân tích các đa thức sau thành nhân tử
a. 1–2y + y2
b. (x + 1)2–25
c. 1–4x2
d. 8–27x3
e. 27 + 27x + 9x2+ x3
f. 8x3–12x2y +6xy2–y3
g. x3+ 8y3
Bài 6:Phân tích các đa thức sau thành nhân tử
a. 3x2–6x + 9x2
b. 10x(x–y)–6y(y–x)
c. 3x2+ 5y–3xy–5x
d. 3y2–3z2+ 3x2+ 6xy
e. 16x3+ 54y3
f. x2–25–2xy + y2
g. x5–3x4+ 3x3–x2
.
Bài 7: Phân tích đa thức thành nhân tử
a. 5x2–10xy + 5y2–20z2
b. 16x–5x2–3
c. x2–5x + 5y–y2
d. 3x2–6xy + 3y2–12z2
e. x2+ 4x + 3
f. (x2+ 1)2–4x2
g. x2–4x–5
Gọi x1, x2 là nghiệm của phương trình x^2+2009x+1=0,
x3,x4 là nghiệm của phương trình x^2+2010x+1=0.
Tính giá trị biểu thức (x1+x3)(x2+x3)(x1-x4)(x2-x4)
Giải các phương trình:
a x - 3 2 + x + 4 2 = 23 − 3 x b ) x 3 + 2 x 2 − x - 3 2 = ( x − 1 ) x 2 − 2 c ) x - 1 3 + 0 , 5 x 2 = x x 2 + 1 , 5 d ) x ( x − 7 ) 3 − 1 = x 2 − x − 4 3 e ) 14 x 2 − 9 = 1 − 1 3 − x f ) $ 2 x x + 1 = x 2 − x + 8 ( x + 1 ) ( x − 4 )
Cho đồ thị x3-2x2+(1+m)x+m =0 . Tất cả các giá trị của tham số m để PT có 3 nghiệm phân biệt x1 ,x2 ,x3 thỏa x12+x22+x33=4 là ?
Giải phương trình bằng cách đưa về phương trình tích:
a ) 3 x 2 − 7 x − 10 ⋅ 2 x 2 + ( 1 − 5 ) x + 5 − 3 = 0 b ) x 3 + 3 x 2 − 2 x − 6 = 0 c ) x 2 − 1 ( 0 , 6 x + 1 ) = 0 , 6 x 2 + x d ) x 2 + 2 x − 5 2 = x 2 − x + 5 2
Chứng minh rằng :
a. Các hàm số f(x)=x3−x+3và g(x)=x3−1x2+1f(x)=x3−x+3và g(x)=x3−1x2+1 liên tục tại mọi điểm x∈Rx∈R.
b. Hàm số f(x)={x2−3x+2x−2 vớix≠2,1 vớix=2f(x)={x2−3x+2x−2 vớix≠2,1 vớix=2
liên tục tại điểm x=2x=2
c. Hàm số f(x)={x3−1x−1 vớix≠12 vớix=1f(x)={x3−1x−1 vớix≠12 vớix=1
gián đoạn tại điểm x=1
nhanh ik giúp tui tick 3 cái cho