=> x + 1 - 1 = 2x
=> x = 2x
=> x - 2x = 0
=> -x = 0
=> x = 0
\(ab+a-b-1=a^2-b^2\Leftrightarrow2a^2-2ab-2b^2-2a+2+2b=0\)
\(màa^2+b^2=2=>4a^2-4a+1-\left(a+b\right)^2+2\left(a+2\right)-1=0\)
=>.......................8
=> x + 1 - 1 = 2x
=> x = 2x
=> x - 2x = 0
=> -x = 0
=> x = 0
\(ab+a-b-1=a^2-b^2\Leftrightarrow2a^2-2ab-2b^2-2a+2+2b=0\)
\(màa^2+b^2=2=>4a^2-4a+1-\left(a+b\right)^2+2\left(a+2\right)-1=0\)
=>.......................8
GPT:
1, \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)
2,\(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
GPT: \(\left(1+x\right)\sqrt{x-\frac{1}{x}}+\left(1-x\right)\sqrt{1-\frac{1}{x}}=2x-1\)
GPT: \(2x^2+2x+1=\left(2x+3\right)\left(\sqrt{x^2+x+2}-1\right)\)
Gpt: \(\sqrt{x+5}+\sqrt{3-x}-2\left(\sqrt{15-2x-x^2}+1\right)=0\)
gpt:
\(\sqrt{x}+\sqrt[4]{x\left(1-x\right)}+\sqrt[4]{\left(1-x\right)^3}=\sqrt{1-x}+\sqrt[4]{x^3}+\sqrt[4]{x^2\left(1-x\right)}\)
Gpt \(\left(4x+1\right)\sqrt{x^2+1}=2\left(x^2+1\right)+2x-1\)
GPT :
\(2x^2+7x+1+\left(2x-1\right)\sqrt{x^2+1}=0\)
Gpt \(2\left(2x^2+2x+1\right)=\left(5x+2\right)\sqrt{x^2+1}\)
gpt (đặt ẩn phụ)
10, \(x=\left(2004+\sqrt{x}\right)\left(\sqrt{1-\sqrt{x}}\right)^2\)
12, \(x^2+\sqrt[3]{x^4-x^2}=2x+1\).