\(z^2-4z+8=0\)
=>\(\left(z-2\right)^2=-4\)
=>\(\left[{}\begin{matrix}z=-2i+2\\z=-2i-2\end{matrix}\right.\)
\(\left|z_1\right|+\left|z_2\right|-\left|z_1\cdot z_2\right|\)
\(=\left|-2i+2\right|+\left|-2i-2\right|-\left|\left(-2i+2\right)\left(-2i-2\right)\right|\)
\(=\sqrt{\left(-2\right)^2+2^2}++\sqrt{\left(-2\right)^2+\left(-2\right)^2}-\left|4i^2-4\right|\)
\(=\sqrt{8}+\sqrt{8}-\left|-8\right|=4\sqrt{2}-8\)





