Cho 3 số phức z , z 1 , z 2 thỏa mãn z − 1 + 2 i = z + 3 − 4 i , z 1 + 5 − 2 i = 2 , z 2 − 1 − 6 i = 2. Tính giá trị nhỏ nhất của biểu thức T = z − z 1 + z − z 2 + 4
A. 2 3770 13
B. 10361 13
C. 3770 13
D. 10361 26
Cho số phức z thỏa mãn z + 1 = 3 . Tìm giá trị lớn nhất của biểu thức T=|z+i|+|z+2-i|
A. max T=2.
B. m a x T = 2 5
C. m a x T = 5
D. m a x T = 2 2
Cho các số phức z, w thỏa mãn z − 5 + 3 i = 3 , i w + 4 + 2 i = 2. Tìm giá trị lớn nhất của biểu thức T = 3 i z + 2 w
A. 554 + 5
B. 578 + 13
C. 578 + 5
D. 554 + 13
Số nghiệm phức của phương trình z + 2 | z | + 3 - i = ( 4 + i ) | z | z là
A. 1.
B. 2.
C. 3.
D. 4.
Cho các số phức z, z1, z2 thay đổi thỏa mãn các điều kiện sau: i z + 2 i + 4 = 3 ; phần thực của z1 bằng 2; phần ảo của z2 bằng 1. Tìm giá trị nhỏ nhất của biểu thức T = z - z 1 2 + z - z 2 2
A. 9
B. 2
C. 5
D. 4
Cho các số phức z , z 1 , z 2 thay đổi thỏa mãn các điều kiện sau: i z + 2 i + 4 = 3 ; phần thực của z 1 bằng 2; phần ảo của z 2 bằng 1. Tìm giá trị nhỏ nhất của biểu thức T = z - z 1 2 + z - z 2 2
A. 9
B. 2
C. 5
D. 4
Cho số phức z thỏa mãn z - 1 = 2 . Giá trị lớn nhất của biểu thức T=|z+i|+|z-2-i| bằng
A. 4
B. 8
C. 4 2
D. 8 2
Trong không gian Oxyz cho tam giác ABC có A ( 2;3;3) phương trình đường trung tuyến kẻ từ B là x − 3 − 1 = y − 3 2 = z − 2 − 1 , phương trình đường phân giác trong của góc C là x − 2 2 = y − 4 − 1 = z − 2 − 1 . Biết rằng u → = m ; n ; − 1 là một véc tơ chỉ phương của đường thẳng AB. Tính giá trị của biểu thức T = m 2 + n 2
A. T = 1
B. T = 5
C. T = 2
D. T = 10
Cho các số phức z 1 = − 3 i ; z 2 = 4 + i và z thỏa mãn z − i = 2. Biểu thức T = z − z 1 + 2 z − z 2 đạt giá trị nhỏ nhất khi z = a + b i a , b ∈ ℝ . Hiệu a − b bằng:
A. 3 − 6 13 17
B. 6 13 − 3 17
C. 3 + 6 13 17
D. − 3 + 6 13 17
cc z = x + y i x , y ∈ ℝ là số phức thỏa mãn điều kiện z ¯ - 3 - 2 i ≤ 5 và z + 4 + 3 i z - 3 + 2 i ≤ 1 . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức T = x 2 + y 2 + 8 x + 4 y . Tính M + m
A. -18
B. -4
C. -20
D. -2