Số nghiệm phức của phương trình z + 2 | z | + 3 - i = ( 4 + i ) | z | z là
A. 1.
B. 2.
C. 3.
D. 4.
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19
Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z+3+i-|z|(2+i)=0 và |z|>1. Tính P=a+2b.
A. P = -1
B. P = 8
C. P = 7
D. P = 5
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z - 2 - i = i z ¯ - 2 Khi biểu thức P = z - 3 - i + z + 2 - 3 i đạt giá trị nhỏ nhất thì a-b bằng
A. - 59 8
B. - 5 16
C. - 59 16
D. - 5 8
Cho số phức z=a+bi ( a , b ∈ R ) thỏa mãn |z-1-2i|= 3 . Khi biểu thức P = | z + 3 | 2 - | z - 2 i | 2 đạt giá trị lớn nhất. Giá trị của [ a b ] bằng
A. 14.
B. 13.
C. 7.
D. 8.
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + + z ) z ¯ .
A. -2
B. 0.
C. -1
D. 1
Cho số phức z = a + bi ( a , b ∈ ℕ ) thỏa mãn đồng thời hai điều kiện | z | = | z - 1 - i | và biểu thức A = | z - 2 + 2 i | + | z - 3 + i | đạt giá trị nhỏ nhất. Giá trị của biểu thức a + b bằng
A. -1.
B. 2.
C. -2.
D. 1.
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn đồng thời hai điều kiện z = z ¯ - 1 - i và biểu thức A = z - 2 + 2 i + z - 3 + i đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b bằng
A. -1
B. 2
C. -2
D. 1
Cho số phức z. Giá trị nhỏ nhất của biểu thức P=3|z+i|+3|z-i|+|z+ z -2| bằng
A. 4+ 2 3
B. 2+ 3
C. 2+ 5
D. 2+ 4 2
Cho số phức z thoả mãn |z-1-i|=1 Khi 3|z|=2|z-4-4i| đạt giá trị lớn nhất. Tính |z|
A. 2 - 1
B. 2
C. 2 + 1
D. 3