Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
A. 4.
B. 3.
C. 1.
D. 2.
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = (a;b)\{x0}. Giá trị của a + b – x0 bằng:
A. 100
B. 30
C. 150
D. 50
Cho hàm số y = ln 2 x - a - 2 m ln 2 x - a + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0 (với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thỏa mãn M a x 1 ; e 2 y = 1 . Số phần tử của S là:/
A. 0
B. 1
C. 2
D. Vô số
Gọi S là tập hợp các nghiệm nguyên của bất phương trình 1 3 x 2 - 3 x - 10 . Tìm số phần tử của S.
A. 11
B. 10
C. 9
D. 1
Gọi S là tập tất cả các giá trị nguyên không dương của m để phương trình log 1 3 x + m + log 3 3 - x = 0 có tập nghiệm. Tập S có bao nhiêu tập con?
A. 4
B. 8
C.. 2
D. 7
Biết rằng bất phương trình log 2 5 x + 2 + 2 . log 5 x + 2 2 > 3 có tập nghiệm là S = log a b ; + ∞ , với a, b là các số nguyên dương nhỏ hơn 6 và a ≠ 1 . Tính P = 2 a + 3 b .
A. P = 7
B. P = 11
C. P = 18
D. P = 16
Biết rằng bất phương trình log 2 5 x + 2 + 2 log 5 x + 2 2 > 3 có tập nghiệm là S = log a b ; + ∞ , a, b là các số nguyên dương nhỏ hơn 6 và a ≠ 1 . Tính P = 2 a + 3 b
A. P = 16
B. P = 7
C. P = 11
D. P = 18
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2