Cho hàm số y = x 3 - 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá trị thực của k để đường thẳng d : y = k ( x + 1 ) + 2 cắt đồ thị (C) tại ba điểm phân biệt M, N, P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Biết M (-1;2), tính tích tất cả các phần tử của tập S
A. 1 9
B. - 2 9
C. 1 3
D. -1
Cho hàm số y = x 3 - 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá thực của k để đường thẳng y = k(x+1)+2 cắt đồ thị (C) tại ba điểm phân biệt M, N, P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Biết M(-1;2), tính tích tất cả các phần tử của tập S.
A. 1/9
B. -2/9
C. 1/3
D. -1.
Cho hàm số y = x 3 - 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá trị thực của k để đường thẳng y = k x + 1 + 2 cắt đồ thị (C) tại ba điểm phân biệt M, N, P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Biết M(-1;2), tính tích tất cả các phần tử của tập S.
A. 1 9
B. - 2 9
C. 1 3
D. -1
Cho hàm số y = x 3 − 3 x có đồ thị (C). Gọi S là tập hợp tất cả các giá trị thực của k để đường thẳng y = k x + 1 + 2 cắt đồ thị (C) tại ba điểm phân biệt M − 1 ; 2 , N , P sao cho các tiếp tuyến của (C) tại N và P vuông góc với nhau. Tính tích tất cả các phần tử của tập S.
A. − 2 9
B. 1 3
C. 1 9
D. -1
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 3 - 3 ( m + 1 ) x 2 + 6 m x có hai điểm cực trị là A và B sao cho đường thẳng AB vuông góc với đường thẳng d : y = x + 2 Số phần tử của S là
A. 0
B. 1
C. 2
D. 3
Cho d là đường thẳng đi qua điểm A - 1 ; 3 và có hệ số góc m. Gọi S là tập hợp các giá trị của tham số m để đường thẳng d cắt đồ thị C của hàm số y = x 3 - 3 x + 1 tại ba điểm phân biệt A, B, C sao cho tiếp tuyến với đồ thị tại B và C cắt nhau tại điểm I nằm trên đường tròn đường kính BC. Tính tổng bình phương các phần tử thuộc tập hợp S.
A. 16 9
B. 34 9
C. 38 9
D. 34 3
Cho hàm số f x = x 3 + 3 x 2 + m x + 1 . Gọi S là tổng tất cả giá trị của tham số m để đồ thị hàm số y = f x cắt đường thẳng y = 1 tại ba điểm phân biệt A 0 ; 1 , B , C sao cho các tiếp tuyến của đồ thị hàm số y = f x tại B, C vuông góc với nhau. Giá trị của S bằng
A. 11 5
B. 9 2
C. 9 5
D. 9 4
Cho hàm số f x = x 3 + 3 x 2 + m x + 1 . Gọi S là tổng tất cả các giá trị của tham số m để đồ thị hàm số y = f x cắt đường thẳng y = 1 tại ba điểm phân biệt A 0 ; 1 , B , C sao cho tiếp tuyến của đồ thị hàm số y = f x tại B, C vuông góc với nhau. Giá trị của S bằng:
A. 9 2
B. 9 5
C. 9 4
D. 11 5
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đường thẳng d: y=-x+m cắt đồ thị hàm số y = - 2 x + 1 x + 1 tại hai điểm phân biệt A, B sao cho A B ≤ 2 2 . Tổng giá trị tất cả các phần tử của S bằng
A. -6
B. 0
C. 9
D. -27