Gọi (H) là hình phẳng giới hạn bởi parabol y = x - 3 2 , trục hoành và trục tung. Gọi k 1 , k 2 ( k 1 > k 2 ) lần lượt là hệ số góc của các đường thẳng đi qua điểm A(0;9) và chia (H) thành ba phần có diện tích bằng nhau (tham khảo hình vẽ bên).
Giá trị của k 1 - k 2 bằng
A. .
B. 7.
C. .
D .
Gọi (H) là hình phẳng giới hạn bởi parabol
y= ( x - 3 ) 2 trục hoành và trục tung. Gọi k1,k2(k1>k2) lần lượt là hệ số góc của đường thẳng qua điểm A(0;9 và chia (H) thành ba hình mặt phẳng có diện tích bằng nhau( tham khảo hình vẽ bên). Giá trị của k1-k2 bằng
Gọi H là hình phẳng giới hạn bởi đồ thị hàm số y = - x 2 + 4 x và trục hoành. Hai đường thẳng y=m và y=n chia thành 3 phần có diện tích bằng nhau (tham khảo hình vẽ). Giá trị biểu thức T = ( 4 - m ) 3 + ( 4 - n ) 3 bằng
Xét hình phẳng (H) được giới hạn bởi các đường thẳng y=0, x=0 và đường y = x + 3 2 . Gọi A 0 ; 9 , B b ; 0 − 3 < b < 0 . Tìm giá trị của b để đoạn thẳng AB chia (H) thành hai phần có diện tích bằng nhau?
A. b = - 2
B. b = − 1 2
C. b = − 1
D. b = − 3 2
Gọi (H) là hình phẳng giới hạn bởi các đường y = ( x - 3 ) 2 , trục tung và trục hoành. Gọi k 1 , k 2 ( k 1 < k 2 ) là hệ số góc của hai đường thẳng cùng đi qua điểm A(0;9) và chia (H) thành ba phần có diện tích bằng nhau. Tính k 1 - k 2
A. 13/2.
B. 7.
C. 25/4.
D. 27/4.
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số: y = x 2 - 6 x + 9 và 2 đường thẳng x = 0; y = 0 Đường thẳng (d) có hệ số k và cắt trục tung tại điểm A(0;4). Giá trị của k để (d) chia (H) thành 2 phần có diện tích bằng nhau là:
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 - 4 x + 4 trục tung, trục hoành. Giá trị của k để đường thẳng d đi qua A(0;4) có hệ số góc k chia (H) thành 2 phần có diện tích bằng nhau là
A. K = -6
B. K = -2
C.K = -8
D. K = -4
Cho hàm số y = x 4 - 6 x 2 + m có đồ thị C m .Giả sử C m cắt trục hoành tại bốn điểm phân biệt sao cho hình phẳng giới hạn bởi C m và trục hoành có phần phía trên trục hoành và phần phía dưới trục hoành có diện tích bằng nhau. Khi đó m = a b (với a,b là các số nguyên, b > 0 ; a b là phân số tối giản). Giá trị của biểu thức S=a+b là:
A. 7.
B. 6.
C. 5.
D. 4.
Cho (H) là hình phẳng giới hạn bởi parabol y = 1 4 x 2 + 1 với ( 0 ≤ x ≤ 2 2 ) nửa đường tròn y = 8 - x 2 và trục hoành, trục tung (phần tô đậm trong hình vẽ). Diện tích của (H) bằng: