Biết tiếp tuyến của đồ thị hàm số y = a x + 2 b x + 3 tại điểm M − 2 ; − 4 song song với đường thẳng d : 7 x − y + 5 = 0 . Mệnh đề nào sau đây đúng?
A. a − 3 b = 0 .
B. k = 2 2 .B. k = 1 3 .C. k = 3 2 .D. k = 1 2 .
C. b − 3 a = 0 .
D. b − 2 a = 0
Cho hàm số y = x − 2 x − 3 có đồ thị (C). Tìm m để đường thẳng d đi qua A ( 0 ; m ) có hệ góc bằng 2 cắt (C) tại 2 điểm phân biệt có hoành độ dương
A. m ∈ ℝ .
B. 2 3 < m < 7 .
C. m < 2 3 .
D. m > 7 .
Tìm trên đường thẳng x = 3 điểm M có tung độ là số nguyên nhỏ nhất mà qua đó có thể kẻ tới đồ thị (C) của hàm số y = x 3 - 3 x 2 + 2 đúng 3 tiếp tuyến phân biệt.
A. M(3;2)
B. M(3;-6)
C. M(3;1)
D. M(3;-5)
Cho hàm số \(y=\frac{ax^2-bx}{x-1}\)
Tìm a và b biết rằng đồ thị (C) của hàm số đã cho đi qua điểm \(A\left(-1;\frac{5}{2}\right)\)và tiếp tuyến của (C) tại điểm O(0;0) có hệ số góc bằng -3
Cho hàm số \(y=\frac{ax^2-bx}{x-1}\)
Tìm a và b biết rằng đồ thị (C) của hàm số đã cho đi qua điểm \(A\left(-1;\frac{5}{2}\right)\)và tiếp tuyến của (C) tại điểm O(0;0) có hệ số góc bằng -3
Cho hàm số y = x - 1 x + 2 , gọi d là tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng m - 2. Biết đường thẳng d cắt tiệm cận đứng của đồ thị hàm số tại điểm A(x1;y1) và cắt tiệm cận ngang của đồ thị hàm số tại điểm B(x2;y2). Gọi S là tập hợp các số m sao cho x2 + y1 = -5. Tính tổng bình phương các phần tử của S
A. 4
B. 0
C. 10
D. 9
Cho hàm số y = - x + 1 2 x - 1 có đồ thị (C) đường thẳng A, B Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A, B. Gọi k 1 , k 2 là hệ số góc của các tiếp tuyến với (C) tại A, B. Tìm m để tổng k 1 + k 2 lớn nhất
A. -1
B. -2
C. 3
D. -5
Cho hàm số y = − x + 1 2 x − 1 có đồ thị là (C), đường thẳng d : y = x + m . Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A, B. Gọi k 1 , k 2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A, B. Tìm m để tổng k 1 + k 2 đạt giá trị lớn nhất.
A. m = -1
B. m = -2
C. m = 3
D. m = -5
Cho hai hàm số f ( x ) = a x 4 + b x 3 + c x 2 + d x + e với a ≠ 0 và g(x)= p x 2 + q x - 3 c ó đồ thị như hình vẽ bên dưới. Đồ thị hàm số y=f(x) đi qua gốc tọa độ và cắt đồ thị hàm số y=g(x) tại bốn điểm có hoành độ lần lượt là -2;-1;1 và m. Tiếp tuyến của đồ thị hàm số y=f(x)-g(x) tại điểm có hoành độ x=-2 có hệ số góc bằng -15/2. Gọi (H) là hình phẳng giới hạn bởi đồ thị hai hàm số y=f(x) và y=g(x) (phần được tô đậm trong hình vẽ). Diện tích của hình (H) bằng
A. 1553 120
B. 1553 240
C. 1553 60
D. 1553 30