Gọi a,b lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x 2 + log 3 1 - x trên đoạn [-2;0]. Tổng a+b bằng
A. 5
B. 7
C. 6
D. 0
Kí hiệu a,b lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x)=sin2 x+2 sinx trên đoạn [0;3π/2]. Giá trị a+b bằng
A. 3 3 - 2 4
B. 3 3 + 2 2
C. 3 3 - 2 2
D. 3 3 - 4 2
Cho các số thực a, b, c, d thỏa mãn 0 < a < b < c < d và hàm số y = f(x). Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên [ 0 ; d ] . Khẳng định nào sau đây là khẳng định đúng?
A. M + m = f(b) + f(a)
B. M + m = f(d) + f(c)
C. M + m = f(0) + f(c)
D. M + m = f(0) + f(a)
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - x 3 + 2 x 2 - x + 2 trên đoạn - 1 ; 1 2 . Khi đó tích số M.m bằng
A. 45 4
B. 212 47
C. 125 36
D. 100 9
Cho hàm số y = f x liên tục và không âm trên R thỏa mãn f x . f ' x = 2 x f 2 x + 1 và f 0 = 0 . Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f x trên đoạn 1 ; 3 . Biết rằng giá trị của biểu thức P = 2 M − m có dạng a 11 − b 3 + c , a , b , c ∈ ℤ . Tính a + b + c
A. a + b + c = 4
B. a + b + c = 7
C. a + b + c = 6
D. a + b + c = 5
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 cosx trên đoạn 0 ; π 2 . Khi đó tích M.m bằng
A. π 2 2
B. 2 π 4 + 1
C. π 4 2 + 1
D. π 2 π 4 + 1
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Biết S là tập các giá trị thực của m để hàm số y = 2 f ( x ) + m có 5 điểm cực trị. Gọi a, b lần lượt là giá trị nguyên âm lớn nhất và giá trị nguyên dương nhỏ nhất của tập S. Tính tổng T = a + b.
A. T = 2
B. T = 1
C. T = -1
D. T = -2
Ký hiệu a, A lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x 2 + x + 4 x + 1 trên đoạn [ 0;2]. Giá trị a+ A bằng
A. 7
B. 18
C. 0
D. 12
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 3 − 6 x 2 + 7 trên đoạn 1 ; 5 . Khi đó tổng M + m bằng:
A. − 18
B. − 16
C. − 11
D. − 23