Xét tứ giác ABCD có \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
=>\(\widehat{C}+\widehat{D}+60^0+90^0=360^0\)
=>\(\widehat{C}+\widehat{D}=210^0\)
a: ta có: \(\widehat{C}+\widehat{D}=210^0\)
\(\widehat{C}-\widehat{D}=20^0\)
Do đó: \(\widehat{C}=\dfrac{210^0+20^0}{2}=115^0;\widehat{D}=115^0-20^0=95^0\)
b: Ta có: \(\widehat{C}+\widehat{D}=210^0\)
=>\(\dfrac{3}{4}\cdot\widehat{D}+\widehat{D}=210^0\)
=>\(\dfrac{7}{4}\cdot\widehat{D}=210^0\)
=>\(\widehat{D}=210^0:\dfrac{7}{4}=120^0\)
\(\widehat{C}=\dfrac{3}{4}\cdot\widehat{D}=\dfrac{3}{4}\cdot120^0=90^0\)