Bài 1:
\(A=3+3^2+...+3^{100}\)
=>\(3\cdot A=3^2+3^3+...+3^{101}\)
=>\(3A-A=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\)
=>\(2A=3^{101}-3\)
=>\(2A+3=3^{101}\)
mà \(2A+3=3^n\)
nên n=101
Bài 2:
a: \(M=3+3^2+3^3+3^4+...+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{98}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{98}\right)⋮12\)
=>\(M=4\cdot3\cdot\left(1+3^2+...+3^{98}\right)⋮4\)
b: \(M=3+3^2+...+3^{100}\)
=>\(3M=3^2+3^3+...+3^{101}\)
=>\(3M-M=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\)
=>\(2M=3^{101}-3\)
=>\(2M+3=3^{101}\)
=>n=101
Đúng 1
Bình luận (0)