a: BC=2AB
\(BC=2BE=2CE\)(E là trung điểm của BC)
Do đó: AB=BE=CE
Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>\(\widehat{BDA}=\widehat{BDE}\)
=>DB là phân giác của góc ADE
b: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}=90^0\)
=>DE\(\perp\)EB tại E
=>DE\(\perp\)BC tại E
Xét ΔDBC có
DE là đường cao
DE là đường trung tuyến
Do đó: ΔDBC cân tại D
=>DB=DC
c: ΔDBC cân tại D
=>\(\widehat{DBC}=\widehat{DCB}\)
mà \(\widehat{DBC}=\dfrac{1}{2}\cdot\widehat{ABC}\)
nên \(\widehat{ACB}=\dfrac{1}{2}\widehat{ABC}\)
ΔABC vuông tại A
=>\(\widehat{ACB}+\widehat{ABC}=90^0\)
=>\(\dfrac{1}{2}\cdot\widehat{ABC}+\widehat{ABC}=90^0\)
=>\(\dfrac{3}{2}\cdot\widehat{ABC}=90^0\)
=>\(\widehat{ABC}=90^0:\dfrac{3}{2}=60^0\)
=>\(\widehat{ACB}=90^0-60^0=30^0\)