a, Vì a//b mà a⊥AB nên b⊥AB
b, Vì a//b nên \(\widehat{CDB}+\widehat{ACD}=180^0\) (trong cùng phía)
Do đó \(\widehat{CDB}=180^0-120^0=60^0\)
c, Vì Ct là p/g nên \(\widehat{ICD}=\dfrac{1}{2}\widehat{ACD}=60^0\)
Xét tg CID có \(\widehat{CID}=180^0-\widehat{ICD}-\widehat{CDB}=180^0-60^0-60^0=60^0\)
d, Vì Dt' là p/g nên \(\widehat{BDt'}=\dfrac{1}{2}\widehat{BDy}=\dfrac{1}{2}\widehat{ACD}\left(đồng.vị\right)=60^0=\widehat{CID}\)
Mà 2 góc này ở vị trí so le trong nên Ct//Dt'
a, Vì a//b mà a⊥AB nên b⊥AB
b, Vì a//b nên (trong cùng phía)
Do đó
c, Vì Ct là p/g nên
Xét tg CID có
d, Vì Dt' là p/g nên
Mà 2 góc này ở vị trí so le trong nên Ct//Dt'