Phương trình có 2 nghiệm dương pb khi:
\(\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(2m-5\right)>0\\x_1+x_2=2\left(m+1\right)>0\\x_1x_2=2m-5>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+6>0\\m>-1\\m>\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow m>\dfrac{5}{2}\)
Khi đó:
\(\left|\dfrac{1}{\sqrt{x_1}}-\dfrac{1}{\sqrt{x_2}}\right|=\sqrt{6}\Rightarrow\left|\dfrac{\sqrt{x_1}-\sqrt{x_2}}{\sqrt{x_1x_2}}\right|=\sqrt{6}\)
\(\Rightarrow\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)^2}{x_1x_2}=6\Rightarrow x_1+x_2-2\sqrt{x_1x_2}=6x_1x_2\)
\(\Rightarrow2\left(m+1\right)-2\sqrt{2m-5}=6\left(2m-5\right)\)
\(\Leftrightarrow5\left(2m-5\right)+2\sqrt{2m-5}-7=0\)
Đặt \(\sqrt{2m-5}=t>0\Rightarrow5t^2+2t-7=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{7}{5}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2m-5}=1\Rightarrow2m-5=1\)
\(\Rightarrow m=3\) (thỏa mãn)