a: AKHL nội tiếp
=>góc ALK=góc AHK=góc ABH
Xét ΔAKL và ΔACB có
góc A chung
góc ALK=góc ABC
=.ΔAKL đồng dạng với ΔACB
=>AL/AB=KL/BC
=>AL*BC=AB*KL
b: ΔDBE cân tại D
=>góc EBD=(180 độ-góc BDE)/2=(180 độ-góc ACB)/2
=(góc BAC+góc ABC)/2
góc EBC=góc EBD-góc CBD=góc ABC/2
=>BE là phân giác của góc ABC
=>E là tâm đường tròn nội tiếp ΔABC
c: góc ALK=góc NLC=sđ cung NC+sđ cung AM
góc ALK=góc ABC=sđ cung AN+sđ cung NC
=>AM=AN
Gọi giao của MN với BC là Q
KLCB nội tiếp
=>QK*QL=QB*QC
MNCB nội tiếp
=>QM*QN=QB*QC=QK*QL
góc KLH=góc KAH=góc KHB
=>QH là tiếp tuyến của (O)
=>QK*QL=QH^2
=>QM*QN=QH^2
=>QH là tiếp tuyếncủa (MHN)
mà AH vuông góc QH
nên AH đi qua tâm của (MHN)
mà AM=AN
nên AM=AN=AH