`x^3-7x-6=0`
`<=>x^3+x^2-x^2-x-6x-6=0`
`<=>x^2(x+1)-x(x+1)-6(x+1)=0`
`<=>(x+1)(x^2-x-6)=0`
`<=>(x+1)(x^2-3x+2x-6)=0`
`<=>(x+1)(x-3)(x+2)=0`
`<=>` $\left[\begin{matrix} x=-1\\ x=3\\x=-2\end{matrix}\right.$
Vậy `S={-1;-2;3}`
x3 - 7x - 6 = 0
<=> x3 - x - 6x - 6 = 0
<=> x(x - 1) ( x + 1) - 6 ( x + 1) = 0
<=> (x + 1) ( x2 - x - 6) = 0
<=> (x + 1) ( x- 3 ( x + 2) = 0
vậy x = [- 1 ; 3 ; - 2]
ko đăng lại