\(\dfrac{5}{2\cdot4}+\dfrac{5}{4\cdot6}+...+\dfrac{5}{48\cdot50}\\ =\dfrac{5}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{48\cdot50}\right)\\ =\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\\ =\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=\dfrac{5}{2}\cdot\dfrac{12}{25}=\dfrac{6}{5}\)
Ta có: \(\dfrac{5}{2\cdot4}+\dfrac{5}{4\cdot6}+...+\dfrac{5}{48\cdot50}\)
\(=\dfrac{5}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{48\cdot50}\right)\)
\(=\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(=\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{50}\right)\)
\(=\dfrac{5}{2}\cdot\dfrac{12}{25}\)
\(=\dfrac{60}{50}=\dfrac{6}{5}\)