\(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
\(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}=\dfrac{2y}{3\left(x+y\right)^2}\)
\(\dfrac{2x^2+2x}{x+1}=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
\(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-1\right)\left(x-y\right)}{\left(x-1\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)
\(\dfrac{36\left(x-2\right)^3}{32-16x}=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-\dfrac{9}{4}\left(x-2\right)^2\)
\(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\left(x-y\right)}{-5y\left(x-y\right)}=\dfrac{-x}{5y}\)