Bài 2:
c) Ta có: \(\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{2020\cdot2021}\)
\(=2\left(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2020\cdot2021}\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{2021}\right)\)
\(=2\cdot\dfrac{2018}{6063}=\dfrac{4036}{6063}\)
Bài 1
b) \(\dfrac{9}{16}\) , \(\dfrac{3}{-20}\)
Đây là đáp án của mình nhé bạn.