`d)\sqrt{2+\sqrt{2+\sqrt{x}}}=2` `ĐK: x >= 0`
`=>2+\sqrt{2+\sqrt{x}}=4`
`=>\sqrt{2+\sqrt{x}}=2`
`=>2+\sqrt{x}=4`
`=>\sqrt{x}=2`
`=>x=4` (t/m)
Vậy `x=4`
d) Điều kiện: \(x\ge0\)
\(\sqrt{2+\sqrt{2+\sqrt{x}}}=2\Rightarrow2+\sqrt{2+\sqrt{x}}=4\)
\(\Rightarrow\sqrt{2+\sqrt{x}}=2\Rightarrow2+\sqrt{x}=4\)
\(\Rightarrow\sqrt{x}=2\Rightarrow x=4\left(TM\right)\)
`a)`
`| x-36|=1.4`
`<=> x-36 = 1.4` hoặc `x-36=-1,4`
`<=> x = 37,4` hoặc `x = 34,6`
Vậy `...`
`b)`
`1/( x+3)=5/4`
`<=> 5/(5(x+3)) = 5/4`
`=> 5( x + 3 ) = 4`
`<=> 5x+15=4`
`<=> 5x=-11`
`<=> x = -11/5`
Vậy `...`
`c)`
`1/(1.3)+1/(3.5)+....+1/(x(x+2)) = 8/17`
`<=>` `2/(1.3)+2/(3.5)+....+2/(x(x+2)) = 16/17`
`<=> 1 - 1/3 + 1/3 - 1/5 +....+1/x - 1/(x+2) = 16/17`
`<=> 1 - 1/(x+2) = 16/17`
`<=> 1/(x+2)=1/17`
`=>x+2=17`
`<=> x=15`
Vậy `....`
`d)`
\(\sqrt{2+\sqrt{2+\sqrt{x}}}=2\)
`<=> 2 +` \(\sqrt{2+\sqrt{x}}=4\)
`<=>` \(\sqrt{2+\sqrt{x}}=2\)
`<=>` \(2+\sqrt{x}=4\)
`<=>` \(\sqrt{x}=2\)
`<=> x=4`
Vậy `...`